1、第一章 绪论一、分析方法的分类1. 按分析任务分类定性分析(qualitative analysis):含何种元素、何种官能团定量分析(quantitative analysis) :测定组分的相对含量结构分析(structure analysis) : 形态分析、立体结构、结构与活性2. 按分析对象分类:无机分析和有机分析 3. 按待测组分含量分:常量、微量、痕量、超痕量4. 按分析手段分类化学分析:以物质的化学反应及其计量关系为基础的分析方法,包括:重量分析和容量分析 仪器分析:以物质的物理性质和物理化学性质为基础的分析方法,需要较特殊的仪器,通常称为仪器分析,包括电化学分析、光化学分析、
2、色谱分析、其它仪器分析方法5. 按分析目的分类常规分析:例行分析,日常分析仲裁分析:权威机构、法定分析,具法律效力:司法鉴定等二、 计量单位第二章 样品的采集与处理一、 样品采集的原则:代表性、典型性、适时性二、 样品溶液的制备:(一)溶解法:酸性水溶法、水溶液浸出法、碱性水溶液浸出法、有机溶剂浸出法(二)分解法:高温灰化经高温分解有机物使被测成份能够溶于适当溶剂成可测定状态;低温灰化利用高频电场作用下产生的激发态氧等离子体消化生物样品中的有机体;湿消化法利用浓无机酸和强氧化剂消化样品;密封加压利用高温高压,结合湿消化法消化样品微波消化密闭加压、湿消化与微波能结合消化样品。三、 分离与富集方法
3、:溶剂萃取法、固相萃取法、固相微萃取法、超临界流体萃取法、蒸馏与挥发法、膜分离法第三章 卫生分析数据处理与分析工作的质量保证一、 了解三种误差1、随机误差(偶然误差):在相同条件下多次测量同一量时,误差的绝对值和符号均以不可预定方式变化的误差 。特点:不恒定、难以校正、服从正态分布(统计规律)、单峰性、有界性、抵偿性。原因:仪器波动、读数误差、实验室环境中条件的变化、操作人员的视觉误差和取样误差减免:增加平行测定的次数2、 系统误差:在相同条件下多次测量同一量时,误差的绝对值和符号保持恒定,或在条件改变时按一定规律变化的误差叫系统误差。特点:对分析结果的影响比较恒定;在同一条件下,重复测定,重
4、复出现;影响准确度,不影响精密度;可以消除。原因:方法误差、仪器误差、试剂误差、操作误差减免:采用标准方法,对比实验、校正仪器、作空白实验3、过失误差:测量过程中出现错误造成二、 分清准确度与精密度1 准确度:指测量结果与真值的接近程度。准确度的高低用误差的大小来衡量;误差一般用绝对误差和相对误差来表示。绝对误差:相对误差:2 精密度:平行测量的各测量值间的相互接近程度。(1)绝对偏差 :单次测量值与平均值之差 (2) 相对偏差:绝对偏差占平均值的百分比(3) 平均偏差:各测量值绝对偏差的算术平均值,用来表示一组数据的精密度。 (4)相对平均偏差:平均偏差占平均值的百分比(5)标准偏差:标准偏
5、差又称均方根偏差;用标准偏差比用平均偏差更科学更准确。 标准偏差的计算分两种情况:无限次测量 有限次测量:(6)平均值的标准偏差(7)相对标准偏差(变异系数)三、 有效数字及其运算规则“四舍六入五成双”:舍去部分5时,进1;舍去部分5时,保留末尾成偶数运算法则:1. 加减法:以小数点后位数最少的数为准(即以绝对误差最大的数为准)2. 乘除法:以有效数字位数最少的数为准(即以相对误差最大的数为准)3. 乘方和开方运算:结果有效数字位数与原数据一致。如2.5326.40(6.4009)4. 对数和反对数运算:对数尾数有效数字位数与真数有效数字位数相同。如Log23.56 = 1.3721(1.37
6、2175)注意点:(1)分数、比例系数、实验次数等不记位数;(2)第一位数字大于8时,多取一位,如:8.48,按4位算;(3)四舍六入五留双;(4)注意pH计算,H+=5.0210 -3; pH= 2.299有效数字按小数点后的位数计算。四、 可疑数据的取舍解决的问题:判断测定数据是否为离群值,即过失误差的判断 方法:Q检验法(适合于310次测定); 步骤:(1) 数据排列: X1 , X2 , ,Xn (2) 求极差: Xn X1 (3) 求可疑数据与相邻数据之差: X可疑 X邻近 (4) 计算Q值: (5) 根据测定次数和要求的置信度,(如90%)查表: (6)将Q与Q表 (如 Q90 )
7、相比,若Q Q表 则该数据可疑,应舍弃这个数据; 否则,保留。当数据较少时 舍去一个后,应补加一个数据。 G(Grubbs,格鲁布斯)检验法,基本步骤:(1)排序:1,2,3,4,(2)求和标准偏差S(3)计算G( T)值:(4)由测定次数和要求的置信度,查表得G 表值(5)比较 : 若G计算 G 表,弃去可疑值,反之保留。由于格鲁布斯(Grubbs)检验法引入了标准偏差,故准确性比Q 检验法高。五、 显著性检验显著性检验:利用统计学的方法,检验被处理的问题是否存在统计上的显著性差异。 (一)t-检验法 平均值与标准值(m)的比较 a.计算t值 b.由要求的置信度和测定次数,查表,得: t表
8、c.比较:t计 t表, 表示有显著性差异,被检验方法需要改进。 t计t表,表示有显著性差异(二)-检验法a.计算各组数据的方差S2b.计算值:c.选定置信度,查表(表)d.比较:若F计F表,则两组测定值的精密度之间存在显著性差异,否则差异性不显著。六、 质量评价(回去看一下就行了)第四章一、物质分子内部三种运动形式: (1)电子相对于原子核的运动 (2)原子核在其平衡位置附近的相对振动 (3)分子本身绕其重心的转动 分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量 分子的内能:电子能量Ee 、振动能量Ev 、转动能量Er 即 EEe+Ev+Er e
9、vr 紫外-可见光谱属于电子跃迁光谱。电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。二、 吸收峰位置向长波方向的移动,叫红移 吸收峰位置向短波方向移动,叫蓝移三、朗伯比尔定律:在一定条件下,物质的吸光度与溶液的浓度和液层厚度的乘积成正比。 A:吸光度;描述溶液对光的吸收程度; b:光程长度,单位cm; c:溶液的量浓度,单位molL-; :摩尔吸光系数,单位Lmol-cm-; c:溶液的浓度,单位gL- a:吸光系数,单位Lg-cm- 1、a与的关系为: a =/M (M为摩尔质量) 2、摩尔吸光系数讨论:吸收物质在
10、一定波长和溶剂条件下的特征常数;不随浓度c和光程长度b的改变而改变。在温度和波长等条件一定时,仅与吸收物质本身的性质有关,与待测物浓度无关;可作为定性鉴定的参数;同一吸收物质在不同波长下的值是不同的。在最大吸收波长max处的摩尔吸光系数,以max表示。max表明了该物质最大限度的吸光能力,也反映了光度法测定该物质可能达到的最大灵敏度。max越大表明该物质的吸光能力越强,用光度法测定该物质的灵敏度越高。105:超高灵敏;=(610)104 :高灵敏;10 2 mol/L 时,吸光质点间可能发生缔合等相互作用,直接影响了对光的吸收。故:朗伯比耳定律只适用于稀溶液四、 分光光度计的组成部分:光源、单
11、色器、样品室、检测器 、显示系统。1. 光源:在整个紫外光区或可见光谱区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较长的使用寿命。 可见光区:钨灯作为光源,其辐射波长范围在3202500nm。 紫外区:氢、氘灯。发射185400 nm的连续光谱。2.单色器:将光源发射的复合光分解成单色光并可从中选出任一波长单色光的光学系统。 入射狭缝:光源的光由此进入单色器; 准光装置:透镜或返射镜使入射光成为平行光束; 色散元件:将复合光分解成单色光;棱镜或光栅;聚焦装置:透镜或凹面反射镜,将分光后所得单色光聚焦至出射狭缝; 出射狭缝。3. 样品室:在紫外区须采用石英池,可见区一般用玻璃池。4.
12、检测器:利用光电效应将透过吸收池的光信号变成可测的电信号,常用的有光电池、光电管或光电倍增管。5. 结果显示记录系统:检流计、数字显示、微机进行仪器自动控制和结果处理五、反应体系的酸度 对金属离子存在状态的影响防止水解,防止沉淀生成; 对显色剂浓度的影响:改变存在形式; 对显色剂颜色的影响:改变结构 在相同实验条件下,分别测定不同pH值条件下显色溶液的吸光度。选择曲线中吸光度较大且恒定的平坦区所对应的pH范围。六、测量条件的选择1)选择适当的入射波长:一般应该选择max为入射光波长。如果max处有共存组分干扰时,则应根据“吸收大,干扰小”的原则,考虑选择灵敏度稍低但能避免干扰的入射光波长。2)
13、选择合适的参比溶液 :测得的的吸光度真正反映待测溶液吸光强度。 参比溶液的选择一般遵循以下原则: 若仅待测组分与显色剂反应产物在测定波长处有吸收,其它所加试剂均无吸收,用纯溶剂(水)作参比溶液; 若显色剂或其它所加试剂在测定波长处略有吸收,而试液本身无吸收,用“试剂空白”(不加试样溶液)作参比溶液;若待测试液在测定波长处有吸收,而显色剂等无吸收,则可用“试样空白”(不加显色剂)作参比溶液; 若显色剂、试液中其它组分在测量波长处有吸收,则可在试液中加入适当掩蔽剂将待测组分掩蔽后再加显色剂,作为参比溶液3) 控制适宜的吸光度范围(读数范围):用仪器测定时应尽量使溶液透光度值在T %=1565% (
14、吸光度 A = 0.800.20)。七、紫外可见分光光度法是根据物质分子对紫外(200-400nm)或可见光(400-760nm)区电磁辐射的吸收特征和吸收程度而建立起来的定性、定量分析方法。第五章 分子荧光分析法一、荧光:某些结构的分子或原子受一定波长的光激发(产生吸收),由基态变为激发态;在从激发态返回到基态时,会发射出比吸收光波长更长的光荧光。分子荧光分析法:根据荧光谱线的位置及强度定性或定量分析某些物质。振动弛豫:同一电子能级内以热能量交换形式由高振动能级至低 相邻振动能级间的跃迁。二、 荧光光谱的特征:荧光波长比激发波长长;荧光光谱不随激发波长的不同而改变;荧光光谱与激发光谱大致成镜
15、像关系。三、分子产生荧光必须具备的条件:必须具有能吸收一定频率紫外光的特定结构(*和n*);分子在吸收了特征频率的辐射能之后,必须具有较高的荧光效率。四、外部因素与荧光:温度(随着温度的降低而增强)溶剂(极性:极性溶液可增强荧光强度; 黏度:随黏度的减小而减小; 纯度)pH(影响荧光物质的存在形式、影响荧光配合物的组成)散色光(瑞利散色光和拉曼散色光)荧光熄灭剂(荧光熄灭:荧光分子与溶剂分子或其它溶质分子相互作用引起荧光强度降低或消失的现象。这些溶剂分子或其它溶质分子称为荧光熄灭剂。)第六章 原子吸收光谱法一、 原子吸收光谱的原理1 原子吸收光谱的产生 当辐射光通过原子蒸汽时,若入射辐射的频率
16、等于原子中的电子由基态跃迁到激发态的能量,就可能被基态原子所吸收。2 原子吸收线的轮廓原子吸收线指强度随频率变化的曲线,从理论上讲原子吸收线应是一条无限窄的线,但实际上它有一定宽度。实际原子吸收线的宽度约为10-3 nm 数量级单色光谱线很窄才有明显吸收。3 原子吸收值与原子浓度的关系a 积分吸收: 吸光原子数 N0 越多,吸光曲线面积越大(峰越高)。因此,理论上积分吸收与 N0 呈正比:N0与C呈正比b锐线光源在原子吸收分析中需要使用锐线光源,测量谱线的峰值吸收,锐线光源需要满足的条件: (1)光源的发射线与吸收线的0一致。 (2)发射线的1/2小于吸收线的 1/2。提供锐线光源的方法:空心
17、阴极灯3 峰值吸收一般发射线的半宽度为吸收线半宽度的1/51/10,且辐射线与吸收线的中心频率一致。4 基态原子数与原子化温度 原子吸收光谱是利用待测元素的原子蒸气中基态原子与共振线吸收之间的关系来测定的。需要考虑原子化过程中,原子蒸气中基态原子与待测元素原子总数之间的定量关系。T一定,比值一定。基态原子数与温度呈正比。5 定量基础A = k N0 b N0 Nc ( N0激发态原子数,N基态原子数,c 待测元素浓度)所以:A=lg(IO/I)=K c二、 原子吸收分光光度计的基本结构1. 光源:提供待测元素的特征光谱。空心阴极灯2. 原子化系统:将试样中待测元素转变成原子蒸气。无火焰原子化器
18、的原子化效率火焰原子化器;3 分光器:将待测元素的共振线与邻近谱线分开。色散元件(棱镜、光栅),凹凸镜、狭缝4 检测系统:主要由检测器、放大器、对数变换器、显示记录装置组成。三、 火焰类型化学计量火焰(燃助比与化学计量比相近):中性火焰,温度高,干扰少,稳定,背景低,常用。富燃火焰(燃气量大):还原性火焰,燃烧不完全,温度稍低,测定较易形成难熔氧化物的元素Mo、Cr稀土等。贫燃火焰(助燃气量大):火焰温度低,氧化性气氛,适用于碱金属测定。四、 干扰1 光谱干扰:待测元素的共振线与干扰物质谱线分离不完全,这类干扰主要来自光源和原子化装置。在分析线附近有单色器不能分离的待测元素的邻近线可以通过调小
19、狭缝的方法来抑制这种干扰。空心阴极灯内有单色器不能分离的干扰元素的辐射换用纯度较高的单元素灯减小干扰。灯的辐射中有连续背景辐射用较小通带或更换灯2 电离干扰:指高温电离而使基态原子数减少,引起原子吸收信号下降的现象。被测元素浓度越大,电离干扰越小。消除办法:加入消电离剂。3 化学干扰:是指在液相或气相中,被测元素的原子在火焰中与共存元素及火焰成分发生化学作用及电离而产生的干扰。 直接影响分析元素的原子化率,是主要干扰之一。干扰的消除尽量提高火焰温度和有效利用火焰气氛;加入保护剂,使待测元素避免与干扰元素结合;加入释放剂,使被测元素释放出来;溶剂萃取分离(萃取待测元素或萃取干扰元素);加入基体改
20、良剂,改良基体。4 物理干扰:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、雾化效率、雾滴大小等。采用标准加入法或稀释法来排除物理干扰。5 背景吸收:来自样品组分在原子化过程中产生的分子吸收和微粒对特征辐射光的散射。背景校正的方法:1、邻近非共振线校正法;2、氘灯扣除背景法;3、Zeeman 效应扣除背景法五、 测定的方法:标准曲线法、标准加入法、内标法第七章 原子荧光光谱法一、基本原理(一) 原子荧光光谱的产生气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发辐射波长相同或不同的辐射即为原子荧光。原
21、子荧光属光致发光,也是二次发光。当激发光源停止照射后,再发射过程立即停止。(二) 原子荧光的类型 原子荧光可分为共振荧光、非共振荧光与敏化荧光等三种类型。(三) 荧光强度 当仪器与操作条件一定时,除 N 外,其它为常数,N 与试样中被测元素浓度 C 成正比If = f AI0 ( 1- e -KC ) 当浓度很小时, 1- e KC KC If = KC上式为原子荧光定量分析的基础。 低浓度时成立!(四)量子效率与荧光猝灭受光激发的原子,可能发射共振荧光,也可能发射非共振荧光,还可能无辐射跃迁至低能级,所以量子效率一般小于1。受激原子和其它粒子碰撞,把一部分能量变成热运动与其它形式的能量,因而
22、发生无辐射的去激发过程,这种现象称为荧光猝灭。荧光猝灭会使荧光的量子效率降低,荧光强度减弱。二、原子荧光光度计与原子吸收光度计的主要区别:原子荧光光度计与原子吸收光度计在很多组件上是相同的。如原子化器(火焰和石墨炉);用切光器及交流放大器来消除原子化器中直流发射信号的干扰;检测器为光电倍增管等。1. 光源:在原子荧光光度计中,需要采用高强度激发光源。商品仪器中多采用高强度空心阴极灯、无极放电灯两种。2. 光路:在原子荧光中,为了检测荧光信号,避免待测元素本身发射的谱线,要求光源、原子化器和检测器三者处于直角状态。而原子吸收光度计中,这三者是处于一条直线上。3.色散系统:色散型。色散元件是光栅。
23、 非色散型。非色散型用滤光器来分离分析线和邻近谱线,可降低背景。4.检测系统:色散型原子荧光光度计用光电倍增管。非色散型的多采用日盲光电倍增管,它的光阴极由Cs-Te材料制成,对160280 nm波长的辐射有很高的灵敏度,但对大于320nm波长的辐射不灵敏。第八章 电位分析法一、 电位分析法 :利用原电池的电动势来测定离子的浓度。原电池:能自发地进行电化学反应,将化学能转变为电能的装置。电解池:由外电源提供电能,在电池内部发生化学反应,将电能转变为化学能的装置。 阳极(anode):发生氧化反应(失去电子)的电极阴极(cathode):发生还原反应(获得电子)的电极负极:电位低的电极正极:电位
24、高的电极二、盐桥:是连接和“隔离”不同电解质的装置。盐桥的作用:构成原电池的通路、维持溶液的电中性、消除液体接界电位三、 Nernst方程:表示电极电位与组成电极的物质及其活度、温度之间的关系。对于一个给定的电极:氧化态(Ox)+ne 还原态(Red),在一定温度下, 25时(T273K25K)四、电极类型指示电极:电极电位随待测液离子活度(浓度)的变化而变化,对离子呈Nernst响应。主要有金属基电极和薄膜电极。参比电极:在指定温度下、压力下,电位已知,并且不随待测溶液的组成改变而改变的电极。标准氢电极,基准,电位值为零(任何温度)。常用的是饱和甘汞电极(0.2416V)和Ag/AgCl电极
25、(0.2224V)工作电极:在电化学测量中,电极表面有电流通过的电极五、pH玻璃电极(P118-P119,好好看)膜电位25时对于某一离子选择电极待测离子为阳离子时,取+, 阴离子时,取-六、pH玻璃电极使用注意事项:1、使用前PH玻璃电极需在蒸馏水或PH=4的缓冲溶液中浸泡824h或更长,以使玻璃膜表面活化。暂时不用时可浸泡于蒸馏水中;2、一般PH玻璃电极的使用范围是PH=19,锂玻璃膜PH玻璃电极的测定范围扩大为PH=114;3、电极膜特别薄,使用、存放时要十分小心。电极安装时要比参比电极略高一些,以免碰碎或擦伤;4、不能测定含F-的溶液和具有脱水性的溶液;5、不对称电位:如果PH玻璃电极
26、内部和外部溶液H+溶液相同,内、外参比电极也相同,那么测得的电池电动势按理应该为零,但实际上总有一个小电位,称之为不对称点位;6、对于将PH玻璃电极与参比电极组合在一起制成的复合PH电极,须浸泡在含KCl的PH=4缓冲溶液中。七、离子选择电极的性能(1) 选择性1、选择性系数 Ki,j能产生相同电位时待测离子i与干扰离子j 的活度比 表示共存离子j 对响应离子i 干扰程度 Kij 越小,电极对待测离子的选择性越高;Ki,j的实用意义:可用于判断电极对测量体系的适应性;可作为选择适当的离子强度调节剂的参考;可作为试样预处理时选用试剂的参考 (2)线性范围和检测下限:分别是Nernst响应区的直线
27、所对应的浓度范围和电极可进行有效测量待测离子的最低浓度。(3)电极斜率:在线性范围内,待测离子的活度变化一个数量级时,所引起的电极电位变化值(mV),即图中AB段的斜率,也称为级差。离子电荷数越大,级差越小,测定灵敏度也越低,电位法多用于低价离子测定。(4)响应时间:是指参比电极与离子选择电极一起接触到试液起直到电极电位值达到稳定值的95%所需的时间。(5)内阻:电池内阻决定测量仪器的输入阻抗,包括膜内阻、内参比液和内参比电极的内阻。(6)稳定性和重现性(7)寿命八、电子强度调节剂:把浓度较大、但不干扰测定的惰性电解质溶液叫做离子强度调节剂作用:1、NaCl用来调节和控制溶液的离子强度;2、H
28、Ac-NaAc用以调节并控制溶液的PH;3、枸橼酸钠的作用是与溶液中共存的Fe3+、Al3+等离子配合,掩蔽其干扰;4、离子强度调节剂还可使液接电位稳定,缩短电极响应时间。九、 比较法测定溶液的pH十、直接电位法的测量误差第九章 电导分析法和库仑分析法一、电导分析法 :以测量电解质溶液电导为基础的分析方法,包括直接电导法和电导滴定法1)直接电导法 通过测量溶液电导值直接获得组分含量的方法;2)电导滴定法 利用在滴定过程中滴定剂与被测物质发生化学反应而引起溶液电导变化,以确定化学计量点的滴定方法。二、电导 G:即电阻的倒数,表示溶液的导电能力,用G表示,单位为西门子(S)电导率:即电阻率的倒数,
29、用 表示: ,表示两个相距1米,面积为1平方米的平行电极间电解质溶液的电导。影响电导率的因素:电解质的性质:在一定范围内,离子的浓度愈大,电导率愈大; 离子的迁移速度愈快,电导率愈大; 离子的价数愈高,电导率愈大。 电解液浓度:单位体积离子数目增加,增大 离子间作用增加,迁移速度减慢,减小 温度:温度升高,离子迁移速度加快,增大摩尔电导率 :在相距为1米的两平行电极间放置1mol电解质的溶液所具有的电导,以 表示。单位:S m2 mol-1。电解质溶液无限稀释摩尔电导 是溶液中所有离子无限稀释摩尔电导总和。 在一定温度和溶剂中, 为一定值。该值在一定程度上反 映了个体离子导电能力的大小。三、
30、电导分析法的应用1、水质检验:特殊的实验用水,如等离子体质谱法、离子色谱法 特殊行业用水:半导体行业 环境中水体的监测水的电导率越小,所含电解质杂质越少,但并不能说明其纯度高。2. 大气监测: 大气污染物: SO2 、CO、 CO2、 NXOY、HCl、H2S 利用适宜的溶液将气体吸收,测定气体吸收前后溶液的电导率的变化,用标准气体进行校正即可以得到被测空气的某些污染物的含量。3. 水中溶解氧的测定 水中的溶解氧与铊反应产生能导电的离子:4TlO2H2O4Tl4OH4. 强电解质溶液总浓度的测定土壤、海水的盐度;5. 其他应用电离度的测定、平衡常数测定、难溶盐的溶解度如测定醋酸的电离平衡常数,
31、测量难溶盐AgCl的溶解度等。四、库仑分析法以电解为基础,利用电流通过待测液,使其发生电解反应,从消耗的电量与待测物质的化学计量关系求得溶液中待测物质的含量。按照电解方式不同,可分为控制电位库仑分析法和控制电流库仑分析法。五、极化:电流通过电极时,电极电位偏离其平衡电位的现象,包括浓差极化和电化学极化。超电位:因极化作用而使电极电位偏离其平衡电位的差值。分为浓差极化电位和电化学超电位。(1) 浓差极化:由于电解过程中电极表面附近溶液的浓度与本体溶液的浓度的差异引起的极化现象。这时的电极电位与平衡电位的差值即是浓差极化超电位。(2)电化学极化:由于电极反应慢引起的电极电位偏离其平衡电位的现象。这
32、时的电极电位与平衡电位的差值即是电化学超电位。五、库仑分析法的基本原理:库仑分析法的理论基础法拉第电解定律 (1)电极上析出的物质的质量(W)与通过体系的电量(Q) 成正比(法拉第第一定律)。(2)相同电量通过不同电解质溶液时,在电极上发生变化的物质的质量与各物质的M/n成正比(法拉第第二定律)。基本要求:工作电极反应单纯只有被测物;电流效率接近100%。六、 库仑滴定法中影响结果的重要因素辅助电解质第十一章 色谱分析方法概论一、色谱法分类:1、按两相的聚集状态(1)流动相的状态:液相色谱法(LC);气相色谱法(GC);超临界流体色谱法 (SFC)(2)固定相的状态:液相色谱法:液固色谱法(L
33、SC)液液色谱法(LLC) 气相色谱法:气固色谱法(GSC)气液色谱法(GLC)2、 按操作形式:(1)柱色谱法(固定相装于柱子中):填充柱色谱法、毛细柱色谱法 (2)平面色谱法(固定相呈平面状):薄层色谱法、纸色谱法3、 按分离原理:(1)、吸附色谱法:组分与吸附剂吸附能力强弱不同,包括气固色谱法(GSC)和液固色谱法(LSC)(2)、分配色谱法:组分在固定液中溶解度不同,包括气液色谱法(GLC)和液液色谱法(LLC)(3)、离子交换色谱(IEC):组分与离子交换剂的交换能力大小(4)、尺寸排阻色谱又称为尺寸排阻色谱或凝胶色谱(SEC)分子尺寸大小不同在多孔固定相中的选择渗透(5)、亲和色谱
34、法(AC):组分与固定相(固定化分子)的高专属性亲和力二、色谱法:利用混合物各组分在固定相和流动相间的相互作用(吸附、分配、离子交换、亲和力、分子尺寸)不同,使固定相对组分的保留作用不同,当两相作相对运动时,不同组分产生反复多次的差速迁移而进行分离的方法。第十二章 气相色谱法一、气相色谱法的分类1、固定相状态:气液色谱(GLC)(分配色谱);气固色谱(GSC)(吸附色谱)2、分离原理:分配色谱;吸附色谱3、操作形式:填充柱色谱;毛细柱色谱二、气相色谱常用术语1.色谱图(流出曲线):由检测器输出的电信号强度对时间作图所绘制的曲线2.基线:在操作条件下,仅有流动相流过色谱柱时的流出曲线3定性参数保
35、留值(1)保留时间tR:从进样到组分浓度出现最大值(色谱峰最高点)所需时间(2)死时间tM(t0 ):不被固定相滞留组分的保留时间,即流动相流过色谱柱所需要的时间(3)调整保留时间:扣除死时间的保留时间,即组分在固定相中滞留的时间(4)保留体积VR:组分从进样到出现信号最大值所需要流动相的体积:VRtR F0(5)死体积VM:不被固定相滞留组分的保留体积:VMtM F0(6)调整保留体积:组分的保留体积与死体积之差(7)相对保留值:指在相同操作条件下,组分(i)与组分(s)的调整保留值之比,称为组分i对组分s的相对保留值,用 表示:ris只随柱温和固定相的改变而变化ris不随色谱柱的柱长、柱径
36、、流动相的改变而改变表示色谱柱(固定相)对不同组分的选择性当 ri,s1时,色谱柱对组分有选择性4、 定量参数峰高和峰面积峰高h:色谱峰底最高点至峰底间的距离峰面积A:峰与峰底间的面积5、色谱柱效能评价区域宽度(1)峰宽Wb:又称峰底峰宽,基底宽度是色谱峰两侧拐点处的切线在基线上截取的距离(2)半峰宽W1/2:又称半峰宽,是峰高一半处的峰宽(3)标准偏差 :正态分布的色谱峰上两拐点间距离的一半或0.607倍峰高处的峰宽的一 半。 表示色谱柱后流出组分的分散程度程度, 值越小,峰窄,柱效高Wb、W1/2、 表示正态分布色谱峰不同峰高处的区域宽度,是衡量色谱柱效能的三种指标。W1/2最容易测定,常
37、用W1/2评价柱效6、分配系数 K:在一定温度和压力下,组分在固定相(s)和流动相(m)间达到平衡时的浓度之比。 K由组分和固定相的热力学性质决定,是组分的特征值随柱温、柱 压的变化而变化。K与两相的体积无关,与所用的仪器无关。7、分配比(容量因子)k:在一定温度和压力下,两相平衡时,固定相中组分的质量(p)与流动相中组分的质量(q)的比值: 组分在两相间的分配比实际等于其滞留于两相中的时间或相应流动相体积之比,所以即: 保留时间取决于分配系数K和分配比 k三、气相色谱基本理论:热力学理论:塔板理论和动力学理论:速率理论(一)塔板理论的四个假设1.即色谱柱是由一系列连续的、相等的水平塔板组成(
38、塔板上部为流动相占据,下部为固定相占据),每一块塔板的高度用H表示,称为理论塔板高度。2载气是间歇式(脉冲式)进入色谱柱,每次进气一个塔板体积V3在色谱柱的每一“塔板”内,组分在两相间瞬间达到分配平衡。分配系数在各塔板内是常数4样品全部加在第0号塔板上,且忽略样品沿柱方向的纵向扩散(二)柱效能指标:指色谱柱在色谱分离过程中主要由操作参数所决定的分离效能。 理论塔板数(n) 理论塔板高度(H) 有效塔板数(neff)1、色谱柱长度一定时,n或neff越大,H 越小,组分的分配次数越大,柱效能越大;2、同一色谱柱对不同组分的柱效能不同;3、色谱峰越窄,表示此组分的色谱柱效能越高。4、对一定长度的色
39、谱柱,H增大,n减小,导致Wb增大,色谱峰扩展塔板理论的贡献:(1)解释了色谱流出曲线的形状和浓度极大点的位置 (2)提出了评价柱效能指标n和H塔板理论的不足:(1)不能解释载气流速与理论塔板数的关系 (2)不能回答色谱峰为什么发生变形 (3)不能说明塔板高度受什么因素影响(三)速率理论(Van Deemter 方程):H=A+B/u+Cu1、涡流扩散项A:(1)产生原因:随载气一起流动的组分由于固定相的阻碍而改变运动方向,形成“涡流”,导致不同的组分分子在柱中走过的路程长短不一致,引起峰形的扩张。(2)涡流扩散项的表达式a与填充物的平均颗粒直径dp(单位cm)大小及填充的不均匀性有关b与载气
40、性质,线速度和组分无关填充柱填充越均匀规则,,体平均颗粒直径越小,则涡流扩散越小,色谱峰扩张变形小2、 分子扩散项B/u(纵向扩散项)(1) 产生原因:组分被载气带入色谱柱后,以“塞子”的形式存在于柱内很小一段空间中,在“塞子”的前后(纵向)存在着浓度差而形成浓度梯度,使运动着的分子产生纵向扩散。(2) 分子扩散项表达式与路径弯曲因子有关,而与填充物有关:由于固定相颗粒的存在,使分子不能自由扩散,从而使扩散程度降低。(1)空心毛细管柱:没有填充物的阻碍,扩散程度最大, = 1(2)填充柱:由于填充物的阻碍,扩散路径弯曲,扩散程度降低, 1. 与组分在载气流中的分子扩散系数Dg成正比。(1)Dg
41、与组分及载气的性质有关:相对分子质量越大,Dg越小。(2)Dg 与载气密度的平方根或载气相对分子质量的平方根成反比。(3)Dg 也随柱温的升高而增加,但与柱压成反比。与组分在柱内的保留时间有关,保留时间越长(相当于载气流速越小),分子扩散项对色谱峰扩张的影响越显著。3、 传质阻力项Cu传质过程:组分在气液两相中溶解、扩散、平衡和转移的过程传质阻力:影响传质速度的阻力Cu组分随载气流动时,组分在两相中反复扩散分配运动所受的传质阻力。包括液相传质阻力和气相传质阻力。 CuCgu+Cl u气相传质过程:组分从气相移动到气-液界面的过程.在该过程中,组分将在两相间进行质量交换,即浓度分配。试样组分在两相界面上不能瞬间达到分配平衡,从而引起滞后现象,使得色谱峰变宽。液相传质过程:组分从固定相的气-液界面进入液相内部,并发生质量交换,达到分配平衡,然后再返回气液界面的过程。处于气相中的组分分子没有液相阻力,较早到达柱口,先流出处于液相中的组分分子因液相传质阻力而滞后,较晚到达柱口,从而造成峰形的扩张。4. 流动相线速度u 对塔板高度H的影响A :不受u影响; B/u : u, H; Cu: u, H四、 检测器的性能指标1、 灵敏度(S)单位量的物质通过检测器时所产生的信号大小。S=R/