1、 实数部分实数部分 第一章:第一章:有理数与实数有理数与实数 一、实数与数轴一、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数 轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可 以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 二、实数大小的比较二、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。 2、正数大于 0;负数小于 0;正数大于一切负数;两个负数绝对值大的反而小。 三、实数的运算三、实数的运算 1、加法加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加
2、; (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可 使用加法交换律、结合律。 2、减法减法:减去一个数等于加上这个数的相反数。 3、乘法乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。 (2)n 个实数相乘,有一个因数为 0,积就为 0;若 n 个非 0 的实数相乘,积的符号由负因 数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法除法: (1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。 (3)0 除以任何数都等于 0,0
3、 不能做被除数。 5、乘方与开方乘方与开方:乘方与开方互为逆运算。 6、实数的运算顺序实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如 果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级 的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。 四、有效数字和科学记数法四、有效数字和科学记数法 1、科学记数法科学记数法:设 N0,则 N= a n 10(其中 1a10,n 为整数) 。 2、有效数字有效数字:一个近似数,从左边第一个不是 0 的数,到精确到的数位为止,所有的数字, 叫做这个数的有效数字。精确度的形式有两
4、种: (1)精确到那一位; (2)保留几个有效数字。 代数部分代数部分 第二章:代数式第二章:代数式 基础知识点:基础知识点: 一、代数式一、代数式 1、代数式代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者 一个字母也是代数式。 2、代数式的值代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。 3、代数式的分类代数式的分类: 无理式 分式 多项式 单项式 整式 有理式 代数式 二、整式的有关概念及运算二、整式的有关概念及运算 1、概念 (1)单项式:像 x、7、 yx22 ,这种数与字母的积叫做单项式。单独一个数或字母也是单 项式。 单项式的次数
5、:一个单项式中,所有字母的指数叫做这个单项式的次数。 单项式的系数:单项式中的数字因数叫单项式的系数。 (2)多项式:几个单项式的和叫做多项式。 多项式的项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。 多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项 叫常数项。 升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起 来,叫做把多项式按这个字母升(降)幂排列。 (3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。 2、运算 (1)整式的加减: 合并同类项:把同类项的系数相加,所得结果作为系数,字
6、母及字母的指数不变。 去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不 变;括号前面是“”号,把括号和它前面的“”号去掉,括号里的各项都变号。 添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“”号, 括到括号里的各项都变号。 整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同 类项。 (2)整式的乘除: 幂的运算法则:其中 m、n 都是正整数 同底数幂相乘: nmnm aaa ;同底数幂相除: nmnm aaa ;幂的乘方: mnnm aa)( 积的乘方: nnn baab)( 。 单项式乘以单项式:用它们系数的积作为积的
7、系数,对于相同的字母,用它们的指数 的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个 因式。 单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得 的积相加。 单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有 字母,则连同它的指数作为商的一个因式。 多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。 乘法公式: 平方差公式: 22 )(bababa ; 完全平方公式: 222 2)(bababa , 222 2)(babab
8、a 三、因式分解三、因式分解 1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。 2、常用的因式分解方法: (1)提取公因式法: )(cbammcmbma (2)运用公式法: 平方差公式: )( 22 bababa ;完全平方公式: 222 )(2bababa (3)十字相乘法: )()( 2 bxaxabxbax (4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。 (5)运用求根公式法:若 )0(0 2 acbxax 的两个根是 1 x 、 2 x ,则有: )( 21 2 xxxxacbxax 3、因式分解的一般步骤: (1)如果多项式的各项有公因式,那么先
9、提公因式; (2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法; (3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。 (4)最后考虑用分组分解法。 四、分式四、分式 1、分式定义:形如B A 的式子叫分式,其中 A、B 是整式,且 B 中含有字母。 (1)分式无意义:B=0 时,分式无意义; B0 时,分式有意义。 (2)分式的值为 0:A=0,B0 时,分式的值等于 0。 (3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把 分子、分母因式分解,再约去公因式。 (4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的最
10、终结果若是分式,一定要化为最简分式。 (5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做 分式的通分。 (6)最简公分母:各分式的分母所有因式的最高次幂的积。 (7)有理式:整式和分式统称有理式。 2、分式的基本性质: (1) )0(的整式是 M MB MA B A ; (2) )0(的整式是 M MB MA B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分 式的值不变。 3、分式的运算: (1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减, 先把它们通分成同分母的分式再相加减。 (2)乘:先对各分式的分子、
11、分母因式分解,约分后再分子乘以分子,分母乘以分母。 (3)除:除以一个分式等于乘上它的倒数式。 (4)乘方:分式的乘方就是把分子、分母分别乘方。 五、二次根式五、二次根式 1、二次根式的概念:式子 )0( aa 叫做二次根式。 (1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽 方的因式的二次根式叫最简二次根式。 (2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二 次根式。 (3)分母有理化:把分母中的根号化去叫做分母有理化。 (4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式, 我们就说这两个代数式互为有理化因式(
12、常用的有理化因式有: a 与 a ; dcba 与 dcba ) 2、二次根式的性质: (1) )0()( 2 aaa ; (2) )0( )0( 2 aa aa aa ; (3) baab (a0,b0) ; (4) )0, 0(ba b a b a 3、运算: (1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。 (2)二次根式的乘法: abba (a0,b0) 。 (3)二次根式的除法: )0, 0(ba b a b a 二次根式运算的最终结果如果是根式,要化成最简二次根式。 例题: 一、因式分解:一、因式分解: 1、提公因式法: 例 1、 )(6)(24 22 xy
13、byxa 分析:先提公因式,后用平方差公式解:略 规律总结因式分解本着先提取,后公式等,但应把第一个因式都分解到不能再分解为止, 往往需要对分解后的每一个因式进行最后的审查,如果还能分解,应继续分解。 2、十字相乘法: 例 2、 (1) 365 24 xx ; (2) 12)(4)( 2 yxyx 分析:可看成是 2 x 和(x+y)的二次三项式,先用十字相乘法,初步分解。解:略 规律总结应用十字相乘法时,注意某一项可是单项的一字母,也可是某个多项式或整式, 有时还需要连续用十字相乘法。 3、分组分解法: 例 3、 22 23 xxx 分析:先分组,第一项和第二项一组,第三、第四项一组,后提取
14、,再公式。解:略 规律总结对多项式适当分组转化成基本方法因式分组,分组的目的是为了用提公因式, 十字相乘法或公式法解题。 二、式的运算二、式的运算 1、巧用公式 例 5、计算: 22 ) 1 1 () 1 1 ( baba 分析:运用平方差公式因式分解,使分式运算简单化。解:略 规律总结抓住三个乘法公式的特征,灵活运用,特别要掌握公式的几种变形,公式的逆 用,掌握运用公式的技巧,使运算简便准确。 2、化简求值: 一定要先化到最简再代入求值,注意去括号的法则。 3、分式的计算: 化简分式计算过程中: (1)除法转化为乘法时,要倒转分子、分母; (2)注意负号 4、根式计算 二次根式的性质和运算是
15、中考必考内容,特别是二次根式的化简、求值及性质的运用是中 考的主要考查内容。 代数部分 第三章:方程和方程组第三章:方程和方程组 基础知识点: 一、方程有关概念一、方程有关概念 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的 方程的解也叫做方程的根。 3、解方程:求方程的解或方判断方程无解的过程叫做解方程。 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。 二、一元方程二、一元方程 1、一元一次方程 (1)一元一次方程的标准形式:ax+b=0(其中 x 是未知数,a、b 是已知数,a0) (2)一玩一次方
16、程的最简形式:ax=b(其中 x 是未知数,a、b 是已知数,a0) (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为 1。 (4)一元一次方程有唯一的一个解。 2、一元二次方程 (1)一元二次方程的一般形式: 0 2 cbxax (其中 x 是未知数,a、b、c 是 已知数,a0) (2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法 (3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。 (4)一元二次方程的根的判别式: acb4 2 当0 时方程有两个不相等的实数根; 当=0 时方程有两个相等的实数根; 当0, 即原不等式
17、的解集为 2 10 a a x , 3 2 10 a a 解此方程求出 a 的值。解:略 规律总结此题先解字母不等式,后着眼已知的解集,探求成立的条件,此种类型题都采 用逆向思考法来解。 代数部分 第六章:函数及其图像第六章:函数及其图像 知识点: 一、平面直角坐标系一、平面直角坐标系 1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。在平面直角坐标系内 的点和有序实数对之间建立了一对应的关系。 2、不同位置点的坐标的特征: (1)各象限内点的坐标有如下特征: 点 P(x, y)在第一象限x 0,y0; 点 P(x, y)在第二象限x0,y0; 点 P(x, y)在第三象限x0,y
18、0; 点 P(x, y)在第四象限x0,y0。 (2)坐标轴上的点有如下特征: 点 P(x, y)在 x 轴上y 为 0,x 为任意实数。 点 P(x,y)在 y 轴上x 为 0,y 为任意实数。 3点 P(x, y)坐标的几何意义: (1)点 P(x, y)到 x 轴的距离是| y |; (2)点 P(x, y)到 y 袖的距离是| x |; (3)点 P(x, y)到原点的距离是 22 yx 4关于坐标轴、原点对称的点的坐标的特征: (1)点 P(a, b)关于 x 轴的对称点是 ),( 1 baP ; (2)点 P(a, b)关于 x 轴的对称点是 ),( 2 baP ; (3)点 P(
19、a, b)关于原点的对称点是 ),( 3 baP ; 二、函数的概念二、函数的概念 1、常量和变量:在某一变化过程中可以取不同数值的量叫做变量;保持数值不变的量 叫做常量。 2、函数:一般地,设在某一变化过程中有两个变量 x 和 y,如果对于 x 的每一个值,y 都有唯一的值与它对应,那么就说 x 是自变量,y 是 x 的函数。 (1)自变量取值范围的确是: 解析式是只含有一个自变量的整式的函数,自变量取值范围是全体实数。 解析式是只含有一个自变量的分式的函数,自变量取值范围是使分母不为 0 的实数。 解析式是只含有一个自变量的偶次根式的函数,自变量取值范围是使被开方数非负 的实数。 注意:在
20、确定函数中自变量的取值范围时,如果遇到实际问题,还必须使实际问题有 意义。 (2)函数值:给自变量在取值范围内的一个值所求得的函数的对应值。 (3)函数的表示方法:解析法;列表法;图像法 (4)由函数的解析式作函数的图像,一般步骤是:列表;描点;连线 三、几种特殊的函数 1、一次函数 直线位置与 k,b 的关系: (1)k0 直线向上的方向与 x 轴的正方向所形成的夹角为锐角; (2)k0 直线向上的方向与 x 轴的正方向所形成的夹角为钝角; (3)b0 直线与 y 轴交点在 x 轴的上方; (4)b0 直线过原点; (5)b0 直线与 y 轴交点在 x 轴的下方; 2、二次函数 抛物线位置与
21、 a,b,c 的关系: (1)a 决定抛物线的开口方向 开口向下 开口向上 0 0 a a (2)c 决定抛物线与 y 轴交点的位置: c0图像与 y 轴交点在 x 轴上方; c=0图像过原点; c0图像与 y 轴交点在 x 轴下方; (3)a,b 决定抛物线对称轴的位置:a,b 同号,对称轴在 y 轴左侧;b0,对称轴是 y 轴; a,b 异号。对称轴在 y 轴右侧; 3反比例函数: 4、正比例函数与反比例函数的对照表: 代数部分 第七章:统计初步第七章:统计初步 知识点: 一、总体和样本:一、总体和样本: 在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对象叫做个体。从总体 中抽
22、取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。 二、反映数据集中趋势的特征数二、反映数据集中趋势的特征数 1、平均数 (1) n xxxx, 321 的平均数, )( 1 21n xxx n x (2)加权平均数:如果 n 个数据中, 1 x 出现 1 f 次, 2 x 出现 2 f 次, k x 出现 k f 次(这里 nfff k 21 ) ,则 )( 1 2211kk fxfxfx n x (3)平均数的简化计算: 当一组数据 n xxxx, 321 中各数据的数值较大,并且都与常数 a 接近时,设 axaxaxax n , 321 的平均数为 x 则: axx 。 2
23、、中位数:将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的 中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。 3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。一组数据的众数可能 不止一个。 三、反映数据波动大小的特征数:三、反映数据波动大小的特征数: 1、方差: (l) n xxxx, 321 的方差, n xxxxxx S n 22 2 2 12 )()()( (2)简化计算公式: 2 22 2 2 12 x n xxx S n ( n xxxx, 321 为较小 的整数时用这个公式要比较方便) ( 3 ) 记 n xxxx, 321
24、的 方 差 为 2 S , 设a为 常 数 , axaxaxax n , 321 的方差为 2 S ,则 2 S = 2 S 。 注:当 n xxxx, 321 各数据较大而常数 a 较接近时,用该法计算方差较简便。 2、标准差:方差( 2 S )的算术平方根叫做标准差(S) 。 注:通常由方差求标准差。 四、频率分布四、频率分布 1、有关概念 (1)分组:将一组数据按照统一的标准分成若干组称为分组,当数据在 100 个以内时, 通常分成 512 组。 (2)频数:每个小组内的数据的个数叫做该组的频数。各个小组的频数之和等于数据 总数 n。 (3)频率:每个小组的频数与数据总数 n 的比值叫做
25、这一小组的频率,各小组频率之 和为 l。 (4)频率分布表:将一组数据的分组及各组相应的频数、频率所列成的表格叫做频率 分布表。 (5)频率分布直方图:将频率分布表中的结果,绘制成的,以数据的各分点为横坐标, 以频率除以组距为纵坐标的直方图,叫做频率分布直方图。 图中每个小长方形的高等于该组的频率除以组距。 每个小长方形的面积等于该组的频率。 所有小长方形的面积之和等于各组频率之和等于 1。 样本的频率分布反映样本中各数据的个数分别占样本容量 n 的比例的大小,总体分布反映 总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的 频率分布。 2、研究频率分布的方法;
26、得到一数据的频率分布和方法,通常是先整理数据,后画出频 率分布直方图,其步骤是: (1)计算最大值与最小值的差; (2)决定组距与组数; (3)决定分点; (4)列领率分布表; (5)绘频率分布直方图。 规律总结求平均数有三种方法,即当所给数据比较分散时,一般用平均数的概念来求; 著所给数据较大且都在某一数 a 上下波动时,通常采用简化公式;若所给教据重复出现时,通 常采用加权平均数公式来计算。 规律总结明确方差或标准差是衡量一组数据的波动的大小的,恰当选用方差的三个计算 公式,应抓住三个公式的特征,根据题中数据的特点选用计算公式。 规律总结要掌握获得一组数据的频率分布的五大步骤,掌握整理数据
27、的步骤和方法。 会对数据进行合理的分组。 几何部分几何部分 第一章:线段、角、相交线、平行线第一章:线段、角、相交线、平行线 知识点: 一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限 延伸” 。 二、直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的 形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。 三、射线: 1、射线的定义:直线上一点和它们的一旁的部分叫做射线。 2射线的特征: “向一方无限延伸,它有一个端点。 ” 四、线段: 1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。 2、线段的
28、性质(公理) :所有连接两点的线中,线段最短。 五、线段的中点: 1、定义如图 1 一 1 中,点 B 把线段 AC 分成两条相等的线段,点 B 叫做线段图 11AC 的中点。 2、表示法: ABBC 点 B 为 AC 的中点 或 AB 2 1 MAC 点 B 为 AC 的中点,或AC2AB,点 B 为 AC 的中点 反之也成立 点 B 为 AC 的中点,ABBC 或点 B 为 AC 的中点, AB= 2 1 AC 或点 B 为 AC 的中点, AC=2BC 六、角 1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。 要弄清定义中的两个重点 角是由两条射线组成的图形; 这两条射线
29、必须有一个公共端点。另一种是一条射线绕着端点从一个位置旋转到另一个 位置所形成的图形。可以看出在起始位置的射线与终止位置的射线就形成了一个角。 2角的平分线定义:一条射线把一个角分成两个相等的角, 这条射线叫做这个角的平分线。表示法有三种:如图 12 (1)AOCBOC (2)AOB2AOC 2COB (3)AOCCOB=2 1 AOB 七、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成 360 等份,每 一份叫做一度的角。 1 度=60 分;1 分=60 秒。 八、角的分类: (1)锐角:小于直角的角叫做锐角 (2)直角:平角的一半叫做直角 (3)钝角:大于直角而小于平角的角
30、 (4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成 一直线时,所成的角叫做平角。 (5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所 成的角叫做周角。 (6)周角、平角、直角的关系是: l 周角=2 平角=4 直角=360 九、相关的角: 1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。 3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。 4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。 注意: 互余、互补
31、是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有 特殊的位置关系。 十、角的性质 1、对顶角相等。 2、同角或等角的余角相等。 3、同角或等角的补角相等。 十一、相交线 1、斜线:两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。它们的交点叫 做斜足。 2、两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条 直线互相垂直。 3、垂线:当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫 做垂足。 4、垂线的性质 (l)过一点有且只有一条直线与己知直线垂直。 (2)直线外一点与直线上各点连结的所有线段中,垂线段最短。简单说:
32、垂线段最短。 十二、距离 1、两点的距离:连结两点的线段的长度叫做两点的距离。 2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。 3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂 线段的长度,叫做两条平行线的距离。 说明:点到直线的距离和平行线的距离实际上是两个特殊点之间的距离,它们与点到直线 的垂线段是分不开的。 十三、平行线 1、定义:在同一平面内,不相交的两条直线叫做平行线。 2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 说明:也可以说两条射线或两
33、条线段平行,这实际上是指它们所在的直线平行。 4、平行线的判定: (1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。 5、平行线的性质 (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则 应用性质定理。 6、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。 注意:当角的两边平行且方向相同(或相反)时,这两个角相等。当角的两边平行且 一边方向相同另一方向相反时,这两个角互补。 几何部分 第二章:三角形第二章:
34、三角形 知识点: 一、关于三角形的一些概念一、关于三角形的一些概念 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 组成三角形的线段叫三角形的边;相邻两边的公共端点叫三角形的顶点;相邻两边所组成 的角叫三角形的内角,简称三角形的角。 1、三角形的角平分线。 三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离) 2、三角形的中线 三角形的中线也是一条线段(顶点到对边中点间的距离) 3三角形的高 三角形的高线也是一条线段(顶点到对边的距离) 注意:三角形的中线和角平分线都在三角形内。 如图 2l, AD、 BE、 CF 都是么 ABC 的角平分线,它们都在ABC 内
35、如图 22,AD、BE、CF 都是ABC 的中线,它们都在ABC 内 而图 23,说明高线不一定在 ABC 内, 图 23(1) 图 23(2) 图 23 一(3) 图 23(1) ,中三条高线都在 ABC 内, 图 23(2) ,中高线 CD 在ABC 内,而高线 AC 与 BC 是三角形的边; 图 23 一(3) ,中高线 BE 在ABC 内,而高线 AD、CF 在ABC 外。 4、三角形三条边的关系 三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等 的则叫等边三角形。 等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的 夹角叫项角。 三角
36、形按边相等关系来分类: 三角形 等边三角形 三角形底边和腰不相等的等腰 等腰三角形 不等边三角形 三角形 用集合表示,见图 24 三角形中任意两边之和大于第三边,任意两边之差小于第三边。 推论三角形两边的差小于第三边。 不符合定理的三条线段,不能组成三角形的三边。 例如三条线段长分别为 5,6,1 人因为 5612,所以这三条线段,不能作为三角形的三 边。 三、三角形的内角和三、三角形的内角和 定理三角形三个内角的和等于 180 由定理可知,三角形的二个角已知,那么第三角可以由定理求得。 如已知ABC 的两个角为A90,B40,则C180904050 由定理可以知道,三角形的三个内角中,只可能
37、有一个内角是直角或钝角。 推论 1:直角三角形的两个锐角互余。 三角形按角分类: 钝角三角形 锐角三角形 斜三角形 直角三角形 三角形 用集合表示,见图 三角形一边与另一边的延长线组成的角,叫三角形的外角。 推论 2:三角形的一个外角等于和它不相邻的两个内角的和。 推论 3:三角形的一个外角大于任何一个和它不相邻的内角。 例如图 26 中 1 3;1=34;538;537 8; 28;278;49;4910 等等。 四、全等三角形四、全等三角形 能够完全重合的两个图形叫全等形。 两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相 重合的角叫对应角。 全等用符号“”表示
38、ABCA BC表示 A 和 A, B 和 B, C 和 C是对应点。 全等三角形的对应边相等;全等三角形的对应角相等。 如图 27,ABCA BC,则有 A、B、C 的对应点 A、B、C;AB、BC、CA 的对 应边是 AB、BC、CA。 A,B,C 的对应角是A、B、C。 ABAB,BCBC,CACA;AA, BB,CC 五、全等三角形的判定五、全等三角形的判定 1、边角边公理:有两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角 边”或“SAS” ) 注意:一定要是两边夹角,而不能是边边角。 2、角边角公理:有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边 角“或“AS
39、A” ) 3、推论有两角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边 域“AAS” ) 4、边边边公理有三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS” ) 由边边边公理可知,三角形的重要性质:三角形的稳定性。 除了上面的判定定理外, “边边角”或“角角角”都不能保证两个三角形全等。 5、直角三角形全等的判定:斜边、直角边公理有斜边和一条直角边对应相等的两个直 角三角形全等(可以简写成“斜边,直角边”或“HL” ) 六、角的平分线六、角的平分线 定理 1、在角的平分线上的点到这个角的两边的距离相等。 定理 2、一个角的两边的距离相等的点,在这个角的平分线上。 由定
40、理 1、2 可知:角的平分线是到角的两边距离相等的所有点的集合。 可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条 角平分线的交点(交于一点) 命题: 在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又 是第二个命题的题设,那么这两个命题叫做互为逆命题,如果把其中的一个做原命题,那么另 一个叫它的逆命题。 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫互逆 定理,其中一个叫另一个的逆定理。 例如: “两直线平行,同位角相等”和“同位角相等,两直线平行”是互逆定理。 一个定理不一定有逆定理,例如定理: “对顶角相等”就没
41、逆定理,因为“相等的角是对顶 角”这是一个假命颗。 七、基本作图七、基本作图 限定用直尺和圆规来画图,称为尺规作网 最基本、最常用的尺规作图通常称为基本作图,例如做一条线段等于己知线段。 1、作一个角等于已知角:作法是使三角形全等(SSS) ,从而得到对应角相等; 2、平分已知角:作法仍是使三角形全等(SSS) 从而得到对应角相等。 3、经过一点作已知直线的垂线: (1)若点在已知直线上,可看作是平分已知角平角; (2)若点在已知直线外, 可用类似平分已知角的方法去做:已知点 C 为圆心,适当长为半径作弧交已知真线于 A、B 两点,再以 A、B 为圆心,用相同的长为半径分别作弧交于 D 点,连
42、结 CD 即为所求垂线。 4、作线段的垂直平分线: 线段的垂直平分线也叫中垂线。 做法的实质仍是全等三角形(SSS) 。 也可以用这个方法作线段的中点。 八、作图题举例八、作图题举例 重要解决求作三角形的问题 1、已知两边一夹角,求作三角形 2、已知底边上的高,求作等腰三角形 九、等腰三角形的性质定理九、等腰三角形的性质定理 等腰三角形的性质定理:等腰三角形的两个底角相等(简写成“等边对等角” ) 推论 1:等腰三角形顶角的平分线平分底边并且垂直于底边,就是说:等腰三角形的顶 角的平分线、底边上的中线、底边上的高互相重合。 推论 2:等边三角形的各角都相等,并且每一个角都等于 60 例如:等腰
43、三角形底边中线上的任一点到两腰的距离相等,因为等腰三角形底边中线就是 顶角的角平分线、而角平分线上的点到角的两边距离相等 n 十十、等腰三角形的判定、等腰三角形的判定 定理:如果一个三角形有两个角相,那这两个角所对的两条边也相等。 (简写成“等角 对等动” ) 。 推论 1:三个角都相等的三角形是等边三角形 推论 2:有一个角等于 60的等腰三角形是等边三角形 推论 3:在直角三角形中,如果一个锐角等于 3O,那么它所对的直角边等于斜边的一 半。 十一、线段的垂直平分线十一、线段的垂直平分线 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理:和一条线段两个端点距离相等的点,在这条
44、线段的垂直平分线上。 就是说:线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。 十二、轴对称和轴对称图形十二、轴对称和轴对称图形 把一个图形沿着某一条直线折叠二如果能够与另一个图形重合,那么就说这两个图形 关于这条直线轴对称,两个图形中的对应点叫关于这条直线的对称点,这条直线叫对称轴。 两个图形关于直线对称也叫轴对称。 定理 1:关于某条直线对称的两个图形是全等形。 定理 2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。 定理 3:两个图形关于某条直线对称,如果它们的对应线段或延长相交。那么交点在对 称轴上。 逆定理:如果两个图形的对应点连线被一条直线垂直
45、平分,那么这两个图形关于这条 直线对称。 如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做 轴对称图形,这条直线就是对称轴。 例如:等腰三角形顶角的分角线就具有上面所述的特点,所以等腰三角形顶角的分角线是 等腰三角形的一条对称轴,而等腰三角形是轴对称图形。 十三、勾股定理十三、勾股定理 勾股定理:直角三角形两直角边 a、b 的平方和等于斜边 c 的平方: cba 22 勾股定理的逆定理:如果三角形的三边长 a、b、c 有下面关系: 222 cba 那么这个三角形是直角三角形 几何部分 第三章:四边形第三章:四边形 知识点: 一、多边形一、多边形 1、多边形:由一些线段
46、首尾顺次连结组成的图形,叫做多边形。 2、多边形的边:组成多边形的各条线段叫做多边形的边。 3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。 4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。 5、多边形的周长:多边形各边的长度和叫做多边形的周长。 6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线 所得直线的问旁,这样的多边形叫凸多边形。 说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形; 有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。 7、多边形的角:多边形相邻两边所组成的角叫
47、做多边形的内角,简称多边形的角。 8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的 外角。 注意:多边形的外角也就是与它有公共顶点的内角的邻补角。 9、n 边形的对角线共有 )3( 2 1 nn 条。 说明:利用上述公式,可以由一个多边形的边数计算出它的对角线的条数,也可以由 一个多边形的对角线的条数求出它的边数。 10、多边形内角和定理:n 边形内角和等于(n2)180。 11、多边形内角和定理的推论:n 边形的外角和等于 360。 说明:多边形的外角和是一个常数(与边数无关) ,利用它解决有关计算题比利用多边形 内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起 来,掌握计算方法。 二、平行四边形二、平行四边形 1、平行四边形:两组对边分别平行的四边形叫做平行四边形。 2、平行四边形性质定理 1:平行四边形的对角相等。 3、平行四边形性质定理 2:平行四边形的对边相等。 4、平行四边形性质定理 2 推论:夹在平行线间的平行线段相等。 5、平行四边形性质定理 3:平行四边形的对角线互相平分。 6、平行四边形判定定理 1:一组对边平行且相等的四边形是平行四边形。 7、平行四边形判定定理 2:两组对边分别相等的四边形