1、第一章基本电磁理论1-1 利用 Fourier 变换, 由时域形式的Maxwell 方程导出其频域形式。(作 1-21-3) 解:付氏变换和付氏逆变换分别为:F(w ) = -f (t)e jwt dtf (t) =1 F(w)e- jwtdw2p-麦氏方程: H = J + Dt E = - Bt B = 0 D = r对第一个方程进行付氏变换:左端= - H(r, t)e jwtdt = D(r,t) H (r, t)e jwtdt = H (r,w )-右端= (J r,t) +e jwtdt = J (r,w) + jwD(r,t)e jwtdtt-= J (r,w) + jwD(r,
2、w)(时谐电磁场) H(r,w ) = J (r,w) + jwD(r,w)同理可得: H (r,w)= - jwB (r,w) B (r, w )= 0 D (r,w)= r (r,w)上面四式即为麦式方程的频域形式。1-2 设各向异性介质的介电常数为e = e 720 020 0403 当外加电场强度为(1)E1= e Ex 0;(2)E2= e Ey 0;(3)E3= e E ;z 0(4)E4= E (e0x+ 2ey) ;(5)E = E (2e50x+ e )y求出产生的电通密度。(作 1-6) 解:D (r , t ) = e E (r , t )D ee12e13E x x 1
3、1E yz即 D = e 21 e 22e 23yD e31e32e33 E z将 E 分别代入,得: D720E 71x = e 0 e D240 0 =E 2D = eE (7 x + 2 y)1 y0003 0 00010 0D1zD 720 0 2 2x = e 240 = e4D= e E(2 x + 4 y)D2 y 0 E0 0 E0 20 0 D 3 z003 0 0D 720 0 0 3x = e e D= 3eE z3 yD0 240 0 =0 E0 030 00D 3 z003E 3D 720 E 11 4 x = e24020 = e10D = e E (11x +10
4、 y)D4 y 0 E0 0 E0 40 0D 4 z003 0 0 D 7202E 16 5x = e 2400 = e 8 D= e E(16x + 8 y)0 5 yD E0 0 E0 50 0D 5 z003 0 0 1-3 设各向异性介质的介电常数为422e = e2420224试求:(1) 当外加电场强度 E = E (e + e0xy+ e ) 时,产生的电通密度 D;z(2) 若要求产生的电通密度D = ex 4e 0 E0 ,需要的外加电场强度 E。(作 1-71-8)rD 422181v = ex e e ee oo解:1.DE D=y242 E 1 =E8 = 8E oo
5、 oo1Dz224181 D = 8e Eo o(x + y + z)2.D = e E 3- 1- 1 3 888 1 8 2 3 = e -11 131 e 1 E ED =e - 88- 8 4E0 = 4 E 1o 00- 8 =0 -1o 113 -0- -1 8E () .88 8 即: E =023x - y - z附: e-1的求解过程:42210042210020-210-124201002-201-102-201-122400122400122400120-210-120-210-102-201-102-201-1026-102008-1-13141433120002000
6、84- 4-130081181838- 8- 13-010 - 13-4488-1-100111- 8- 8-又422e = e 2420 224所以 3- 1- 1888e -11 131= e - 88- 830 - 1- 1- 8881-6 已知理想导电体表面上某点的电磁场为D = D (e0x+ 2ey+ 2e )z试求该点表面电荷及电流密度。H = H0(2ex- 2ey+ e )z解:由已知条件,理想导体表面某点:D = D (e0x+ 2ey+ 2e )(1-6-1)zH = H0(2ex- 2ey+ e )(1-6-2)zDD (e+ 2e+ 2e )122知该点处的法向单位矢
7、量为: e =0xyz =e +e +e(1-6-3)n| D |D12 + 22 + 2203 x3 y3 z理想导体表面上的电磁场满足边界条件:e H = Jnse D = rns(1-6-4)(1-6-5)将(1-6-2)、(1-6-3)式代入(1-6-4)式,得该点处的表面电流密度为:J = e H = 1 e+ 2 e + 2 e H (2e- 2e+ e ) = H(2e + e - 2e )(1-6-6)sn 3 x3 y3 z 0xyz 0xyz将(1-6-1)、(1-6-3)式代入(1-6-5)式,得该点处的表面电荷密度为:r = e) = 3D(1-6-7)D = 1 e
8、+ 2 e + 2 e D (e + 2e + 2e 3x3 yz30 xyzsn01-9 若非均匀的各向同性介质的介电常数为 e, 试证无源区中的时谐电场强度满足下列方程:e2 E + k 2 E = -(E e )(作 1-9)证明:非均匀各向同性介质中(无源区)的时谐电磁场满足 H (r )= jwe E (r )(1-9-1) E = - jwm H(1-9-2)对(1-9-2)式两边取旋度,并利用(1-9-1)得 ( E )= -jw (mH )= -jwm H = w2 meE又 ( E )= ( E )- 2 E所以2 E + w2 meE = ( E )(1-9-3)又在非均匀
9、各向同性介质中 (e E )= e E + E e = 0即 E = - E ee将(1-9-4)代入(1-9-3),得 E e (1-9-4)e2 E + w2 me E = - E e e即2 E + k2 E = - 第二章 平面电磁波2-1导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。解:非均匀各向同性线性媒质中,正弦电磁场满足的Maxwell 方程组为 H = J +jwe E(2-1-1) E = - jwm H(2-1-2) (m H )= 0(2-1-3) (e E )= r(2-1-4)对(2-1-2)式两边取旋度,并应用(2-1-1)得 E =
10、 - jw (mH )= - jwm H - jwm H = - jwm H - jwm (J +jwe E )= - jwm H - jwmJ + w2me E即对(2-1-1)式两边取旋度,并应用(2-1-2)得 H = J +jw (e E )= J +jwe E + jwe E = J +jwe E + w2emH所以非均匀各向同性媒质中,正弦电磁场满足的波动方程为 E -w2me E = - jwm H - jwmJ(2-1-5) H -w2emH = J +jwe E(2-1-6)由(2-1-4)式得 (e E )= e E + E e = r即 E = r - E e(2-1-7
11、)e由(2-1-3)式得 (mH )= m H + H m = 0 即 H = - H mm(2-1-8)利用矢量关系式 ( A)= ( A)- 2 A ,并将(2-1-7)(2-1-8)式代入,得电磁场满足的亥姆霍兹方程为 E e r 2 E + w2 me E = jwm H + jwmJ - e + e (2-1-9) H m 2 H + w2 meH = - J - jwe E - (2-1-10)m均匀介质中, e = m = 0vvr r 2 E + k 2 E = jwmJ + e rrr 2 H + k 2 H = - Jem无源区中k = wvv 2 E + k 2 E =
12、0rr 2 H + k 2 H = 02-4推导式(2-2-8)。解:已知在无限大的各向同性的均匀线性介质中,无源区的正弦电磁场满足齐次矢量Helmholtz 方程:c2 E (r )+ k 2 E (r )= 02 H (r )+ k 2 H (r )= 0meec其 中 k = wc, ee= e - jsw设复传播常数k= k - jk ,则由k 2 = w2 me 得cces s (k - jk )2 = w2 m e - j w 即 k2 - k 2 - 2j kk = w2 m e - j w 所以由等号两边实部和虚部对应相等得k2 - k 2 = w2 me2kk = wmsem
13、 21+ we +1 s 2解以上方程组得k = wem 21+ we -1 s 2k = w2-6 试证一个椭圆极化平面波可以分解为两个旋转方向相反的圆极化平面波。证:任一椭圆极化平面波可写为 E = e Ex x+ je Ey yE = e Ex x+ je Ey y= e 1 (Ex 2x+ E )+ 1 (Ey2x- E ) + jey 1 (Ey 2x+ E )- 1 (Ey2x- E )y = e 1 (Ex 2x+ E )+ jey1 (Ey 2x+ E )+ e)y1 (Ex 2x- E )- jey1 (Ey 2x- E )y令 E = 1 (E12x+ E ), Ey2=
14、1 (E - E2xy,则上式变为E = (e E + je E )+ (e E - je E )x 1y 1x 2y 2上式表示两个旋转方向相反的圆极化平面波之和,因此证明了一个椭圆极化平面波可以分解为两个旋转方向相反的圆极化平面波。2-7 试证圆极化平面波的能流密度瞬时值与时间及空间无关。解:圆极化平面波的电场强度的瞬时值表达式可写为:E(z, t) = e Ecos(wt - kz) + e E cos(wt - kz + p )x 0上式等价于y 02E (z, t) = e Ex 0cos(wt - kz) - e Ey 0sin(wt - kz)磁场强度的瞬时值表达式为:H (z,
15、 t) = eyE0 cos(wt - kz) + eZxE0 sin(wt - kz)Z其中 Z 表示波阻抗。因此能流密度的瞬时值表达式为:S(z, t) = E(z, t) H (z, t)= e E cos(wt - kz) - e Ex 0y 0sin(wt - kz) e E cos(wt - kz) + e0 y Z0 sin( t - kz)Ewx Z E2E2E2= e 0 cos2 (wt - kz) +0 sin2 (wt - kz) = e0z ZZz Z因此圆极化平面波的能流密度瞬时值与时间及空间无关。2-8 设真空中圆极化平面波的电场强度为E(x) = 100(ey+
16、 je )e- j2xV/mz试求该平面波的频率、波长、极化旋转方向、磁场强度以及能流密度。解:由真空中圆极化平面波的电场强度表达式E(x) = 100(ey+ je )e- j2px V/mz知传播常数k = 2p rad/m ,所以波长: l = 2p = 1 mkc频率: f = 3108 Hzl因为此圆极化平面波的传播方向为+x 方向,且电场强度z 分量相位超前 y 分量相位p ,因此为2左旋圆极化平面波。磁场强度可写为H (x) = 1 eZx0 E (x) = 100 (eZz0- jey)e- j2px A/m能流密度为:100*200001000S = E H * = 100(
17、ey + jez )e- j2p x Z0(e - je )e- j2p x = ez yxZ0 ex 6pW/m2 2-9设真空中 z = 0 平面上分布的表面电流JS磁场强度及能流密度。= e Jx S 0cosw t ,式中 J为常数。试求空间电场强度、S 0解: z = 0 平面上分布的表面电流将产生向+z 和-z 方向传播的两个平面波。设向+z 方向传播的电磁波的电场和磁场分别为 E (z,t) 和 H (z,t) ,向-z 方向传播的电磁波的电场和磁场分别为11E (z,t) 和 H22(z,t) 。由电磁场在z=0 平面处满足的边界条件可得:e H (0, t) - Hz12(0
18、, t)= Js(2-9-1)E (0,t) = E (0,t)(2-9-2)12又E (z, t) = Z H (z, t) e , E (z,t) = Z H (z,t) (-e )101z202z所以 Z H (0, t) + H (0, t) e = 0012z即H (0,t) = -H (0,t)(2-9-3)21将(2-9-3)代入(2-9-1)得:e H (0,t) = 1 Jz12 s得H (0,t) = 1 J e12 s= 1 e Jz2 x s 0coswt e= - 1 e Jz2 y s 0coswt(2-9-4)所以 H (z,t) = - 1 e Jcos(w t
19、 - kz),z0(2-9-5)12 y s0ZE (z,t) = - 0 e J cos(w t - kz), z0(2-9-6)1 2x s 0,z0(2-9-7),z01114 z s0ZS (z,t) = E (z,t) H222(z,t) = - 0 e J 2 cos2 (w t + kz) ,z 0 处,则表面电流向+z 方向传播的平面波在理想导体表面产生反射。设反射波的电场和磁场分别为:E r (z) = e E r e jkzH r (z) = -eE r10 e jkz1x 101y Z0由电场在理想导体表面处切向分量为零的边界条件,得Ei e- jkd + E r e j
20、kd = 0(1)1010由 z=0 处电场和磁场满足的边界条件,得:Ei + E r = E101020(2)EiErE e e10 - e10 + e20 = e Jzy Zy Z00y Zx s 0 0EiErE即 - 10 +10 -20 = J(3)ZZZs 0000联立解(1)(2)(3)得:Ei = 1 Z J,102 0 S 0Er = - 1 Z Je j2kd ,102 0 S 01E=Z J (1- ej2kd )202 0 S 011所以Ei (z) = e1x 2Z J0 S 0e- jkz, H i (z) = e1y 2J e- jkzS 011E (z,t) =
21、 eZ J2x 2 0 S 01(1- ej2kd )ejkz, H2(z) = -eJy 2 S 01(1- ej2kd )ejkzE r (z,t) = -e1x 2在0 z d 区域:Z J0 S 01ejk ( z +2d ) ,H r (z) = e1y 2J ejk (z+2d )S 0E (z) = Ei (z) + E r (z) = eZ J2e- jkz 1 - ej2k ( z +d ) 111x0 S 01S 0H (z) = H i (z) + H r (z) = eJ111y2e- jkz 1 + ej2(z+d ) 在 z d 区域:电磁场为零。复能流密度:11S
22、 (z,t) =E (z) H * (z) = eZ J28e- jkz 1 - e j2k ( z +d ) Je jkz 1 + e- j2(z+d ) 1111z0 S 0S 0= -eZ J 2 sin 2k(z + d )z 4 0 S 0(z0)111S (z) =E (z) H * (z) = -eZ J (1- e j2kd )ejkz J (1- e- j2kd )e- jkz = -eZ J 2 (1- cos 2kd )22 22z 8 0 S 0S 0z 4 0 S 0(z0)2-13当平面波自空气向无限大的介质平面斜投射时,若平面波的电场强度振幅为 1V/m,入射角为
23、 60,介质的电磁参数为e = 3, m = 1,试求对于水平和垂直两种极化平面波形成的反射波rr及折射波的电场振幅。解:在真空中:波阻抗为Z = Z =10,传播常数为k = wme00e m0 01介质中的波阻抗为Z =2=,传播常数为k = wm me er 0r 0Z03e e m mr 0 r 0w e e m mw e mr 0 r 00 032设折射角为q,则 sin 60 = k2 =t所以sinq = 1t2sinqt, 即 qtk1= 30(1) 对于平行极化波,有ZZZ cosq - Zcosq0 -0反射系数 R =1i2t = 22 = 0/Z1cosqi+ Z co
24、sq2tZZ0 +02203Z32Z cosqi透射系数 T =Z1cosq2 + Zi2cosqt= ZZ =30 +022可见此时平面波发生无反射现象,折射波的电场振幅为(2) 对于垂直极化波,有3 V/m ;3Z0 -2 3Z02 33Z23Z20+0Z cosq - Z cosq1t反射系数 R= Z2 cosqi + Z cosq= -0.52i1t03Z3Z02 3+02Z2Z cosq透射系数 T= Z cosq22ii= 0.5q+ Z cos1t因此反射波和折射波的电场振幅均为0.5 V/m 。2-16 已知电场强度为 E(z) = e 10e- j2 z 的平面波向三层介质
25、边界正投射,三种介质的参数为xe= 1 , er1r 2= 4 , er3= 16,m = m12= m = m30,中间介质夹层厚度d = 0.5m ,试求各区域中电场强度及磁场强度。解答:xe , m11e , m22e , m33dzEH图2-16由电场强度 E (z) = e 10e- j2pz 知,传播常数k = 2p rad/m,波长l = 2p = 1m。x11k1e1r 2在中间介质中的波长为l = l2= 0.5 m,传播常数k2= 2p = 4p rad/m 。l2e1r 3介质三中的波长为l = l3= 0.25 m,传播常数k3= 2p = 8p rad/m 。l311
26、111三种介质中的波阻抗分别为: Z =1Z = Z , Z =er1002Z =Z , Z =Z =Zer 2er 302 0304 0介质一(z0)中入射波电场和磁场强度为E i (z) = e 10e- j2pz , H i (z) = e10 e- j2pz ,1x1y Z0pE rp令反射电场和磁场强度为E r (z) = e E r e j21x 10z , H r (z) = -e10 e j2 z1y Z1介质二(0d)中,令入射波的电场强度为 E i (z) = e Ei e- j8p( z -d ) 。3x 30则在 z = 0 和 z = d 处有电场和磁场切向分量连续得
27、:10 + E r10= Ei20+ E r20Ei e- j4p d + E r e j4p d = Ei20203010E rEiE r- 10 =ZZ1120 -20ZZ22Ei20 e- j4p d Z2E rEi-=20 e j4p d30ZZ23由以上四式可解得E r = -6 , Ei1020= 6 , E r20= -2 , Ei = 430则各区域的电场和磁场强度为:E i (z) = e 10e- j2pz , H i (z) = e10e- j2p z1x1y Z0E r (z) = -e 6e j2pz , H r (z) = e 6 e j2pz1 x1y Z0E i
28、 (z) = e 6e- j4pz , H i (z) = e 12 e- j4pz2 x2y Z0E r (z) = -e2x2e j4pz , H r (z) = e24 e j4pzx ZE i (z) = e 4e- j8p( z -d ) , H i (z) = e016e- j8p ( z -d )3x3x Z0第三章 辅助函数3-1.由 Lorentz 条件导出电荷守恒定律。解答:已知矢量磁位 A(r) 和标量电位F(r) 分别满足:2 A(r) + w2 me A(r) = -mJ (r)(3-1-1)r(r)2F(r) + w2 meF(r) = - e1(3-1-2)J (
29、r) = - 1 2 A(r) + w2 me A(r) = - 1 2 A(r) + w2 me A(r) = - 1 2 A(r) + w2 me A(r)mm m 由(3-1-1)得J (r) = - m 2 A(r) + w2 me A(r)(3-1-3)所以将 Lorentz 条件 A(r) = - jwme F(r) 代入上式得: J (r) = jwe 2F(r) + w2 meF(r) = -jwr(r)电荷守恒定律得证。3-3 已知在圆柱坐标系中,矢量磁位 A(r ) = ez强度和磁场强度。解:A (r )e- jkz ,式中r =z。试求对应的电场x2 + y2已知 A(r) = e A (r)e- jkz(3-3-1)z zH (r) = 1 A(r)(3-3-2)mE(r) = - jwA(r) - j A(r)wmez将(3-3-1)式代入(3-3-2)、(3-3-3)式,并在圆柱坐标系下展开得(3-3-3)H (r) = 1 A(r) = -e1 A (r)e- jkz = -e1 A(r)e- jkzmj mrj m z A(r)j E(r) = -jw A(r) - j= -e j