1、初中数学总复习提纲第一章 实数重点:数的有关概念及性质,实数的运算内容提要一、 重要概念实数无理数(无限不循环小数)有理数正分数负分数正整数如:0负整数(有限或无限循环小数)整数分数正无理数负无理数1数的分类及概念正数实数 0负数说明:“分类”的原则:1)相称(不重、不漏)2)有标准2非负数:正实数与零的统称。(表为:x0)a(a0)(a为一切实数)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。3倒数: 定义:如果两个数的乘积为1.那么这两个数互为倒数.性质:A.a1/a(a1);B.1/a中,a0;C.0a1时1/a1;a1时,1/a1;D.积为1。4相反数: 定义:如果
2、两个数的和为0.那么这两个数互为相反数.求相反数的公式: a的相反数为-a.性质:A.a0时,a-a;B.a与-a在数轴上的位置关于原点对称;C.两个相反数的和为0,商为-1。5数轴:定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴.作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.所有的有理数可以在数轴上表示出来,所有的无理数如都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。6奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7绝对值:代数定义:正数的绝对值是它的本身,0的绝对值是它
3、的本身,负数的绝对值是它的相反数。a(a0)-a(a0)a=几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。a0,符号“”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。8科学记数法:N=(1a10,n是整数)。(1)当N是大于1的数时,nN的整数位数减去1。如:.(2) 当N是小于1的数时,nN的第一个有效数字前0的个数.如:9. 有效数字:从左边第一个不是0的数字起到右边的所有数字止,所有的数字叫这个数的有效数字。如:0.004015,有效数字是4,0,1,5.一共四个.又如:0.00401500,有效数
4、字是4,0,1,5,0,0,一共六个.二、 实数的运算1 运算法则(加、减、乘、除、乘方、开方)2 运算定律(五个:加法交换律,加法结合律; 乘法交换律,乘法结合律,乘法对加法的分配律)3 运算顺序:高级运算到低级运算,同级运算从左到右(如55),有括号时由小中大。4 逆运算:加法与减法互为逆运算,乘法与除法互为逆运算,乘方与开方互为逆运算。三、 应用举例(略) 附:典型例题1 已知:a、b、x在数轴上的位置如下图,求证:x-a+x-b=b-a.axb 2.已知:a-b=-2且abba+cb+cabacbc(c0)abacbc(cb,bcacab,cda+cb+d.5一元一次不等式的解、解一元
5、一次不等式6一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)7应用举例(略)八 列方程(组)解应用题概述列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。设元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。用含未知数的代数式表示相关的量。寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。解方程及检验。答案。综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元
6、、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 常用的相等关系1 行程问题(匀速运动)基本关系:s=vt相遇问题(同时出发):+=;追及问题(同时出发):ABC甲乙(相遇处)若甲出发t小时后,乙才出发,而后在B处追上甲,则水中航行:;2 配料问题:溶质=溶液浓度 溶液=溶质+溶剂3增长率问题:分析方法:逐年逐月的分析方法. 4工程问题:基本关系:工作量=工作效率工作时间(常把工作量看着单位“1”)。5几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。注意语言与解析式的互化如,“
7、多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。注意从语言叙述中写出相等关系。如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。注意单位换算如,“小时”“分钟”的换算;s、v、t单位的一致等。第四章 函数及其图象重点正、反比例函数,一次、二次函数的图象和性质。 内容提要一、平面直角坐标系1各象限内点的坐标的特点2坐标轴上点的坐标的特点3关于坐标轴、原点对称的点的坐标的特点4坐标平面内点与有序实数对的对应关系二
8、、函数 1 函数中的三个概念:常量,自变量,因变量。2表示方法:解析法;列表法;图象法。3确定自变量取值范围的原则:使代数式有意义;使实际问题有意义。4画函数图象:列表;描点;连线。三、几种特殊函数(定义图象性质)1 正比例函数定义:y=kx(k0) 或y/x=k。图象:直线(过原点)性质:k0,k0,b0)xoy(k0)xoy(k0,b0)xoy(k0,b0,k0时,开口向上;a0时,在对称轴左侧,右侧;a0时,图象位于,y随x;kRd=RdR+rd=R+rR-rdR+rd=R-rdR-r外离外切相交内切内含1.五种位置关系及判定与性质:(重点:相切) 2.相切(交)两圆连心线的性质定理3.
9、两圆的公切线:定义性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:内角的一半:(右图)(解RtOAM可求出相关元素,、等)一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、 有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分八、 基本图形 OABM九、十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦十一、应用举例(略)