牡丹江市初中数学一次函数经典测试题含答案.doc

上传人(卖家):刘殿科 文档编号:6086341 上传时间:2023-05-26 格式:DOC 页数:16 大小:704.50KB
下载 相关 举报
牡丹江市初中数学一次函数经典测试题含答案.doc_第1页
第1页 / 共16页
牡丹江市初中数学一次函数经典测试题含答案.doc_第2页
第2页 / 共16页
牡丹江市初中数学一次函数经典测试题含答案.doc_第3页
第3页 / 共16页
牡丹江市初中数学一次函数经典测试题含答案.doc_第4页
第4页 / 共16页
牡丹江市初中数学一次函数经典测试题含答案.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、牡丹江市初中数学一次函数经典测试题含答案一、选择题1某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示下列说法中正确的个数是()学校到景点的路程为40km;小轿车的速度是1km/min;a15;当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口A1个B2个C3个D4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确

2、,本题得以解决【详解】解:由图象可知,学校到景点的路程为40km,故正确,小轿车的速度是:40(6020)1km/min,故正确,a1(3520)15,故正确,大客车的速度为:15300.5km/min,当小轿车驶到景点入口时,大客车还需要:(4015)(4015)110分钟才能达到景点入口,故正确,故选D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答2给出下列函数:y3x+2:y;y:y3x,上述函数中符合条件“当x1时,函数值y随自变量x增大而增大”的是()ABCD【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分

3、析得出答案【详解】解:y3x+2,当x1时,函数值y随自变量x增大而减小,故此选项不符合题意;y,当x1时,函数值y随自变量x增大而减小,故此选项不符合题意;y,当x1时,函数值y随自变量x增大而增大,故此选项符合题意;y3x,当x1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键3如图,函数和的图象相交于点,则关于的不等式的解集为( )ABCD【答案】A【解析】【分析】直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案即可【详解】解:函数y4x和ykxb的图象相交于点A(m,8),84m,解

4、得:m2,故A点坐标为(2,8),kxb4x时,(k4)xb0,则关于x的不等式(k4)xb0的解集为:x2故选:A【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键4如图,已知一次函数的图象与坐标轴分别交于A、B两点,O的半径为1,P是线段AB上的一个点,过点P作O的切线PM,切点为M,则PM的最小值为( )A2BCD【答案】D【解析】【分析】【详解】解:连结OM、OP,作OHAB于H,如图,先利用坐标轴上点的坐标特征:当x=0时,y=x+2=2,则A(0,2),当y=0时,x+2=0,解得x=2,则B(2,0),所以OAB为等腰直角三角形,则AB=OA=4,OH

5、=AB=2,根据切线的性质由PM为切线,得到OMPM,利用勾股定理得到PM=,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为故选D【点睛】本题考查切线的性质;一次函数图象上点的坐标特征5一次函数y=kx+b(k0)的图象可能是( )ABCD【答案】C【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限【详解】k0和k0时,反比例函数的图象位于第一、三象限,一次函数的图象交y轴于负半轴,y随着x的增大而增大,A选项错误,C选项符合;当k0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y随着x的增大而增减小,B.

6、D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.9如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()AB2CD2【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】过点D作DEBC于点E.由图象可知,点F由点A到点D用时为as,FBC的面积为acm2.AD=a.DEADa.DE=2.当点F从D到B时,用s.BD=.

7、RtDBE中,BE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a2=22+(a-1)2.解得a=.故选C【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系10如图,在矩形中,动点沿折线从点开始运动到点设运动的路程为,的面积为,那么与之间的函数关系的图象大致是()ABCD【答案】D【解析】【分析】由题意当时,当时,由此即可判断【详解】由题意当时,当时,故选D【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题11如图,经过点B(2,0)的直线ykx+b与直线y4x+2相交于点A(1,2),4x+

8、2kx+b0的解集为()Ax2B2x1Cx1Dx1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求【详解】经过点B(2,0)的直线ykx+b与直线y4x+2相交于点A(1,2),直线ykx+b与直线y4x+2的交点A的坐标为(1,2),直线ykx+b与x轴的交点坐标为B(2,0),又当x1时,4x+2kx+b,当x2时,kx+b0,不等式4x+2kx+b0的解集为2x1故选B【点睛】本题考查了一次函数与一元

9、一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合12如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系以下结论正确的是( )A甲的速度为20km/hB甲和乙同时出发C甲出发1.4h时与乙相遇D乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得

10、出相遇的时间;根据图形即可得出乙出发3h时到达A地【详解】解:A甲的速度为:602=30,故A错误; B根据图象即可得出甲比乙早出发0.5小时,故B错误; C设对应的函数解析式为,所以:, 解得即对应的函数解析式为; 设对应的函数解析式为,所以:, 解得 即对应的函数解析式为,所以:, 解得 点A的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D根据图形即可得出乙出发3h时到达A地,故D错误 故选:C【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答13在一条笔直的公路上有、两地,甲乙两人同时出发,甲骑

11、自行车从地到地,乙骑自行车从地到地,到达地后立即按原路返回地.如图是甲、乙两人离地的距离与行驶时间之间的函数图象,下列说法中、两地相距30千米;甲的速度为15千米/时;点的坐标为(,20);当甲、乙两人相距10千米时,他们的行驶时间是小时或小时. 正确的个数为( )A1个B2个C3个D4个【答案】C【解析】【分析】根据题意,确定-正确,当两人相距10千米时,应有3种可能性【详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:y甲=-15x+30y乙=由此可知,正确当15x+30=30x时,解得x=则M坐标为(,20),故正确当两人相遇前相距10km时,

12、30x+15x=30-10x=,当两人相遇后,相距10km时,30x+15x=30+10,解得x=15x-(30x-30)=10得x=错误选C【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题14若正比例函数ykx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()AB2C1D1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k0,再根据待定系数法求出k的值即可【详解】解:正比例函数ykx的图象经过第二、四象限,k0正比例函数ykx的图象过点A(2m,1)和B(2,m),解得:或 (舍去)

13、故选:A【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键15弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )x(kg)0123456y(cm)1212.51313.51414.515Ay=0.5x+12By=x+10.5Cy=0.5x+10Dy=x+12【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量故弹

14、簧总长y(cm)与所挂重物x()之间的函数关系式详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x()之间的函数关系式为y=0.5x+12故选A点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式16一次函数 y = mx +的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A-1B3C1D- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可【详解】一次函数y=mx+|m-1|中y随x的增大而增大,m0一次函数y=mx+|m-1|的图象过点(0,2),当x=0时,|m-1|=2

15、,解得m1=3,m2=-10(舍去)故选B【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键17生物活动小组的同学们观察某植物生长,得到该植物高度(单位:)与观察时间(单位:天)的关系,并画出如图所示的图象(轴),该植物最高的高度是()ABCD【答案】C【解析】【分析】设直线的解析式为,然后利用待定系数法求出直线的解析式,再把代入进行计算即可得解【详解】解:设直线的解析式为,当时,该植物最高的高度是故选:C【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确

16、获取信息是解题的关键18函数中,随的增大而增大,则直线经过()A第一、三、四象限B第二、三、四象限C第一、二、四象限D第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得;从而可得,据此判断直线经过的象限【详解】解:函数中,y随x的增大而增大,则,直线经过第二、三、四象限故选:B【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键即一次函数y=kx+b(k0)中,当k0时,y随x的增大而增大,图象经过一、三象限;当k0时,y随x的增大而减小,图象经过二、四象限;当b0时,此函数图象交y轴于正半轴;当b0时,此函数图象交y轴于负半轴19已知一次函数ykx

17、+k,其在直角坐标系中的图象大体是()ABCD【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(1,0),观察图形即可得出答案【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(1,0),观察四个选项可得:A符合故选A【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标20下列关于一次函数的说法,错误的是( )A图象经过第一、二、四象限B随的增大而减小C图象与轴交于点D当时,【答案】D【解析】【分析】由,可知图象经过第一、二、四象限;由,可得随的增大而减小;图象与轴的交点为;当时,;【详解】,图象经过第一、二、四象限,A正确;,随的增大而减小,B正确;令时,图象与轴的交点为,C正确;令时,当时,;D不正确;故选:D【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式中,与对函数图象的影响是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(牡丹江市初中数学一次函数经典测试题含答案.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|