1、1.经历同底数幂的除法法那么的探索过程,理解同底 数幂的除法法那么;2.理解零次幂和负整数指数幂的意义,并能进行负 整数指数幂的运算;重点,难点3.会用同底数幂的除法法那么进行计算.重点、难点学习目标问题 幂的组成及同底数幂的乘法法那么是什么?同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加.即aman=amnm,n都是正整数导入新课导入新课回忆与思考an底数幂指数情境导入情境导入 一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?1012109 2观察这个算式
2、,它有何特点?我们观察可以发现,1012 和109这两个幂的底数相同,是同底的幂的形式.所以我们把1012 109这种运算叫作同底数幂的除法.1怎样列式?怎样列式?根据同底数幂的乘法法那么进行计算:2827 5253 a2a5 3mn3n21555a73m 27215 53 55 a5a7 3n 28a252乘法与除法互为逆运算21527=()=21575553=()=55-3a7a5=()=a7-53m3mn=()=3m(mn)2852a2 3n填一填:上述运算你发现了什么规律吗?讲授新课讲授新课同底数幂的除法一u自主探究3mn3m猜测:aman=amn(mn)验证:aman=.a aaa
3、aa m个an个a=(aa a)mn个a=amn总结归纳(a0,m,n是正整数,且mn).aman=amn即:同底数幂相除,底数不变,指数相减.例1 计算:典例精析(1)a7a4;(2)(x)6(x)3;(3)(xy)4(xy);(4)b2m+2b2.(1)a7a4=a74=(x)3(3)(xy)4(xy)=(xy)41(4)b2m+2b2注意:同底数幂相除,底数不变,指数相减.解:=a3;(2)(x)6(x)3=(x)63=x3;=(xy)3=x3y3;=b2m+22=b2m.:am=8,an=5.求:1amn的值;(2)a3m3n的值.解:(1)amn=aman=85=1.6;(2)a3m
4、3n=a3m a3n =(am)3(an)3 =83 53 =512 125 =同底数幂的除法可以逆用:amn=aman这种思维叫作逆向思维(逆用运算性质.512.125 10001.01001.0101.0101 零次幂与负整数次幂二 10101010010100010100004 321 2224282164 28124122121 01233210123我们规定 即任何不等于零的数的零次幂都等于1.即用a-n表示an的倒数.010.aa()知识要点10.nnaana(,是正整数)例2 用小数或分数表示以下各数:解:典例精析 1103;27082;31.6104.1103310110001
5、=0.001.270822811;641注意:a0=131.610441016.1=1.60.0001=0.00016.练一练计算下列各式,你有什么发现?与同伴交流.(1)7375;(2)3136;(3)(8)0(8)2.解:(1)7375=73(5);(2)3136=316(3)(8)0(8)2=2211=(8)(8)=(8)0(2)52353111=7=77776671111=333 33总结归纳(a0,m,n是任意整数).1.aman=amn即:同底数幂相除,底数不变,指数相减.112.=0.nnnaanaa(,是整数)1.计算:124313;1512222-33;8=3解:原式;151
6、2151223=32827解:原式;当堂练习当堂练习27243;x yx y(-)()(-)214.mmaam()(是正整数)1478463=x yx yx y解:原式;1=.mmmmaaaaa解:原式2.计算结果用整数或分数表示:00.501()510612()334()1 11100000646427 3.下面的计算对不对?如果不对,请改正.55;aaa(1)104462=.xyx yxy(-)()-(-)54aaa解:不正确,改正:;104446-.-xyxyx yxy()解:不正确,改正:()4.3m=2,9n=10,求33m2n 的值.解:33m2n =33m32n =(3m)3(3
7、2)n =(3m)39n =2310 =810 =0.8.5.地震的强度通常用里克特震级表示,描绘地震级数字表示地震的强度是10的假设干次幂.例如,用里克特震级表示地震是8级,说明地震的强度是107.1992年4月,荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震,加利福尼亚的地震强度是荷兰地震强度的多少倍?解:由题意得 ,答:加利福尼亚的地震强度是荷兰地震强度的100倍.6241010100106.若a()2,b(1)1,c()0,则 a、b、c的大小关系是()Aabc Bacb Ccab Dbca3223解析:a()2()2 ,b(1)11,c()01,acb.32329423B学习
8、目标1.学会根据问题的特点,用统计来估计事件发生的 概率,培养分析问题,解决问题的能力;重点2.通过对问题的分析,理解并掌握用频率来估计概 率的方法,渗透转化和估算的思想方法.难点 抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:正面朝上正面朝下 你认为正面朝上和正面朝下的可能性相同吗?导入新课导入新课问题引入(1)同桌两人做20次掷硬币的游戏,并将记录 记载在下表中:频率与概率讲授新课讲授新课做一做 (2)累计全班同学的试验结果,并将实验数据 汇总填入下表:20406080 100 120 140 160 180 2000.501.00.20.7频率实验总次数3根据上表,完成下面的折线统计图
9、.当试验次数很多时当试验次数很多时,正面朝上的频率折线正面朝上的频率折线差不多稳定在差不多稳定在“0.5 水平直线水平直线 上上.(4)观察上面的折线统计图,你发现了什么规律?当实验的次数较少时,折线在“0.5水平直线的上下摆动的幅度较大,随着实验的次数的增加,折线在“0.5水平直线的上下摆动的幅度会逐渐变小.下表列出了一些历史上的数学家所做的掷硬币实验的数据:历史上掷硬币实验历史上掷硬币实验分析试验结果及下面数学家大量重复试验数据,大家有何发现?试验次数越多频率越接近0.5.抛掷次数n0.52048 4040 100001200024000“正面向上”频率 0mn 无论是掷质地均匀的硬币还是
10、掷图钉,在试验次数很大时正面朝上钉尖朝上的频率都会在一个常数附近摆动,这就是频率的稳定性.我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A).一般的,大量重复的试验中,我们常用随机事件A发生的频率来估计事件A发生的概率.归纳总结 事件A发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?必然事件发生的概率为1;不可能事件发生的概率为0;随机事件A发生的概率P(A)是0与1之间的一个常数.想一想例 王老师将1个黑球和假设干个白球放入一个不透明的口袋并搅匀,让假设干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计
11、数据(结果保存两位小数):典例精析解:(1)25110000.25.大量重复试验事件发生的频率逐渐稳定到0.25附近,估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,10.25(1+x),x3.答:估计袋中有3个白球(1)补全上表中的有关数据,根据上表数据估计 从袋中摸出一个球是黑球的概率是多少;(2)估算袋中白球的个数当堂练习当堂练习1.以下事件发生的可能性为0的是A.掷两枚骰子,同时出现数字“6朝上 B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟 .今天是星期天,昨天必定是星期六.小明步行的速度是每小时千米D 2.口袋中有个球,其中个红球,个蓝球,个白球
12、,在以下事件中,发生的可能性为1 的是 A.从口袋中拿一个球恰为红球 B.从口袋中拿出2个球都是白球 C.拿出6个球中至少有一个球是红球 D.从口袋中拿出的球恰为3红2白C 3.小凡做了5次抛掷均匀硬币的实验,其中有 3次正面朝上,2次正面朝下,他认为正面朝 上的概率大约为 ,朝下的概率为 ,你同 意他的观点吗?你认为他再多做一些实验,结果还是这样吗?3525答:不同意.概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.小明抛掷一枚均匀的硬币,正面朝上的概率为 ,那么,抛掷100次硬币,你能保证恰好50次正面朝上吗?12 答:不能,这是因为频数和频率的随机性 以及一定的规律性.或者说概率是针对大量 重复试验而言的,大量重复试验反映的规 律并非在每一次试验中都发生.5.对某批乒乓球的质量进行随机抽查,如下表所示:1完成上表;0.7 0.80.86 0.81 0.82 0.828 0.825