1、2020/10/161.OBCA特征:特征:角的顶点在圆上角的顶点在圆上.角的两边都与圆相交角的两边都与圆相交.圆周角定义圆周角定义:顶点在圆上顶点在圆上,并且两边都和圆相交的并且两边都和圆相交的角叫圆周角角叫圆周角.圆周角的定义圆周角的定义Z.x.x.K Z.x.x.K 2020/10/1621.判别下列各图形中的角是不是圆周角,并说明理由。判别下列各图形中的角是不是圆周角,并说明理由。不是不是不是不是是是不是不是不是不是图图图图图图图图图图辨一辨辨一辨2020/10/163OCB思考:思考:2020/10/164OABCDEOBC以不变应万变以不变应万变(弧不变)(弧不变)2020/10/
2、165图中的圆周角有图中的圆周角有:BAC BAD BDA DBA DAC 2020/10/166 Zx.xkZx.xk2020/10/167 21一条弧所对的圆周角等于它一条弧所对的圆周角等于它所对的圆心角的一半所对的圆心角的一半.Zx.xkZx.xk2020/10/168CABOABCCOOAB已知已知:如图,如图,BOC和和BAC分别是分别是BC所对的圆心角和圆周角所对的圆心角和圆周角求证:求证:BAC=BOC21温馨提示:分类温馨提示:分类 角边上角边上 角内角内 角外角外2020/10/169ABOC证明:(证明:(1)当圆心)当圆心O在圆周角在圆周角BAC的一边的一边AB上时上时O
3、A=OCBAC=CBOC是是OAC的外角的外角BOC=C+BAC =2BACBAC=BOC21特殊:圆心特殊:圆心O落在圆周角的边上!落在圆周角的边上!求证求证:BAC=BOC212020/10/1610BACDO(2)当圆心当圆心O在圆周角在圆周角BAC的内部时的内部时,过点过点A作直径作直径AD由由(1)得得BAD=BOD DAC=DOC BAD+DAC=(BOD+DOC)即即:BAC=BOC21212121能否也使圆心能否也使圆心O落在圆周角的边上落在圆周角的边上?求证求证:BAC=BOC212020/10/1611BACDO(3)当圆心当圆心O在在BAC的外部时的外部时,过点过点A作直
4、径作直径AD,则由则由(1)得得DAC=DOC DAB=DOB DAC-DAB=(DOC-DOB)即即:BAC=BOC21212121能否也使圆心能否也使圆心O落在圆周角的边上落在圆周角的边上?求证:求证:BAC=BOC212020/10/1612OBACOBACOBAC圆周角定理:圆周角定理:一条弧所对的一条弧所对的圆周角圆周角等于它所对的等于它所对的圆心角圆心角的的一半一半。BAC和和BOC都对都对BCBAC=BOC212020/10/1613C=D=EC=D=E问题问题1 1、如图、如图1,1,在在O O中中,C,D,E,C,D,E的大小有什么关的大小有什么关系系?为什么为什么?图图1O
5、CABDE同弧所对的圆周角相等!同弧所对的圆周角相等!2020/10/1614问题问题2 2、如图、如图2 2,BCBC是是O O的直径,的直径,A A是是O O上任一点,上任一点,你能确定你能确定BACBAC的度数吗的度数吗?BAOC图图2BAC=90BAC=90 问题问题3 3:如图:如图3 3,圆周角,圆周角BAC=90BAC=90,弦,弦BCBC经过圆经过圆心心O O吗?为什么?吗?为什么?OBCA图图32020/10/1615半圆或直径半圆或直径所对的圆周角是所对的圆周角是直角直角,推论:推论:ABOC2020/10/16162020/10/1617思考题:如图,在 O中,DE=2BC,EOD=64,求 A的度数。ABCDEO你好聪明!你好聪明!2020/10/1618THANKSFOR WATCHING谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!演讲人:XXX PPT文档教学课件