1、4.2等可能条件下的概率(一)(3)如图,甲、乙两村之间有两A,B两条道路,小亮从甲村去乙村,大刚从乙村去甲村,两人同时出发.如果每人从A,B两条道路中随机选择一条,而且他们都不知道对方的选择,那么两人在途中相遇的概率是多少?AABB所有等可能所有等可能的结果有的结果有4 4种,种,即即AAAA,ABAB,BABA,BBBB,其中两人其中两人相遇相遇的结果有的结果有2 2种种.大刚大刚小亮小亮ABABAAAABABABBBB走走A A走走B B走走B B走走A A列表列表2142(相遇)P想一想:用树状图和列表法来计算概率,有什么优点?A,B两个盒子里各装入分别写有数字0,1的两张卡片,分别从
2、每个盒子中随机取出1张卡片,两张卡片上的数字之积为0的概率是多少?列表列表A AB B0 01 11 10 00 00 00 01 1由上表可知,两张卡片上的数字之积共有4种等可能的结果,积为0的结果有3种.430()两数之积为P小亮小亮 大刚大刚抽到抽到A A组组抽到抽到B B组组 抽到抽到C C组组抽到抽到A A组组AAAAABABACAC抽到抽到B B组组BABABBBBBCBC抽到抽到C C组组CACACBCBCCCC小亮和大刚报名参加运动会100米比赛,预赛分A,B,C三组进行,运动员通过抽签决定参加哪个小组,他们恰好分到一组的概率是多少?解:解:3193(同组)P1所以他们恰好分到
3、一组的概率是3(江苏扬州中考)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.第二次第二次第一次第一次雪碧雪碧可乐可乐果汁果汁奶汁奶汁雪碧雪碧 雪碧、可乐雪碧、果汁雪碧、奶汁可乐可乐可乐、雪碧 可乐、果汁可乐、奶汁果汁果汁果汁、雪碧果汁、可乐 果汁、奶汁奶汁奶汁奶汁、雪碧奶汁、可乐奶汁、果汁 同时掷两枚骰子,落定后,两枚骰子朝上一面的点数之和可能是哪些数?其中概率最大的是什么数?
4、概率最小的是什么数?6 67 78 89 91010 1111 12125 56 67 78 89 91010 11114 45 56 67 78 89 910103 34 45 56 67 78 89 92 23 34 45 56 67 78 81 12 23 34 45 56 67 7+1 12 23 34 45 56 6解解:点数之和点数之和2 23 34 45 56 67 78 89 91010 1111 1212 结果数结果数1 12 23 34 45 56 65 54 43 32 21 1由表格可看出,点数之和为7的情况最多,有6种,概率最大.点数之和为2和12的情况最少,各1种,
5、概率最小.613667()点数之和为P36112()点数之和为P3612()点数之和为P如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.123解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有1种,因此游戏者获胜的概率为 .转盘摸球1 11 12 2(1,1)(1,1)(1,2)(1,2)2 2(2,1)(2,
6、1)(2,2)(2,2)3 3(1,3)(1,3)(2,3)(2,3)61 利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率,如何选择两种方法?小小 结结 成语故事南辕北辙讲了一个人 如果点O表示魏国的位置,点A表示楚国的位置,我们假设楚国与魏国的距离为30 km,以魏国为坐标原点,我们规定向南为正方向,而此人从魏国出发向北到了点B也走了30 km,请同学们把这3个点在数轴上表示出来导入新课导入新课情境引入现在的位置魏国楚国OA-30-20-10 0102030B若我们假设楚国A1与魏国的距离为50km,同样以魏国为坐标原点,规定向南为正方向
7、,而此人从魏国出发向北到了点B1也走了50 km,请同学们也把这两个点在数轴上表示出来OAB-30-10 0102030-204050-40-50B1A1思考:观察点A,A1与点B,B1两对点所表示的数,你发现了什么?讲授新课讲授新课相反数一合作探究活动:请观察这两个数,它们有什么异同点?你还能列举两个这样的数吗?5.35.3数字相同符号不同 如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.3232数字相同数字相同符号不同符号不同+-55数字相同数字相同符号不同符号不同+知识要点例1 画一条数轴,并标出表示下列各数的相反数的点:3,1
8、.5,-6解:3的相反数是-3,;1.5的相反数是-1.5;-6的相反数是6,且-3,-1.5,6在数轴上对应的点分别为A,B,C,如下图所示:4 3 2 1 0 1 2 3 4 5 6ABC典例精析练一练1.判断题,看谁回答的又对又快!(1)10是10的相反数()(2)10是10的相反数()(3)1.5与1.5互为相反数()(4)2是相反数()2.写出下列各数的相反数:3,-7,-2.1,32,0,20,115解:3的相反数是-3;-7的相反数是7;-2.1的相反数是2.1;0的相反数是0;20的相反数是-20;的相反数是-;2323511的相反数是 .511问题:前面提到“南辕北辙”的故事
9、中30和30,50和50在数轴上的位置有什么关系?在数轴上,-30与30,-50和50所对应的点位于原点两侧,且与原点的距离相等.思考:数轴上表示相反数的两个点和原点有什么关系?2.互为相反数的两个数到原点的距离相等.1.互为相反数的两个数分别位于原点的两侧(0除外);-30-10 0102030-204050-40-50例2 如图,图中数轴的单位长度为1(1)如果点A、B表示的数是互为相反数,那么点C 表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?DEACB 解:(1)点C表示的数是-1;(2)点C表示的数是0.5,D表示的数是-4.5方法总结:已知数轴
10、上两点表示的数互为相反数,那么数轴上这两点到原点的距离相等,两点的中点即为原点所在.例3 在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数.解:因为数轴上A点表示7,且点C到点A的距离为2,所以C点有两种可能5或9又因为B,C两点所表示的数互为相反数,所以B点也有两种可能-5或-9 数轴上与原点距离是2的点有_个,这些点表示的数是_;与原点的距离是5的点有_个,这些点表示的数是_.02-2两 2和-25和-5两 练一练 一般地,设a是一个正数,数轴上与原点的距离是a的点有_个,它们分别在原点的_,互为_,表示为_,我们说这两点关于原点对称.注意:
11、数轴上,a和-a互为相反数,它们表示的点到原点的距离相等.两左右-a和a相反数方法总结多重符号的化简二思考:a的相反数是什么?a 的相反数是a,a可表示任意有理数.在一个数前面加上“”号表示求这个数的相反数,如果在这些数前面加上“”号呢?在一个数前面加上“”仍表示这个数,“”号可省略 填空:(1)-(+0.8);(2)-(-3);(3)+(+3);(4)+(-0.15);(5)+-(-1.1);(6)-+(-7).例4 解:(1)-(+0.8)=-0.8;(2)-(-3)=3;(3)+(+3)=3;(4)+(-0.15)=-0.15;(5)+-(-1.1)=+(+1.1)=1.1;(6)-+(
12、-7)=-(-7)=7.由内向外依次去括号 对于数字前面含有多个符号的数的化简,只要观察“”号的个数即可如果有奇数个“”号,结果的符号就是“”号;如果有偶数个“”号,结果的符号就是“”号方法总结 (1)是_的相反数,(2)是_的相反数,=_ (3)是_的相反数,(4)是_的相反数,4_41.7_1.7100_100 15157.17.11001004-4)51()51(练一练1-1.6是_的相反数,_的相反数是0.32下列几对数中互为相反数的一对为()A 和 B 与 C 与 D8与-(-8)8()8()8()8()8()8(1.6C-0.3当堂练习当堂练习(1)6是6的相反数();(2)5是相
13、反数();(3)与 互为相反数();(4)1和1互为相反数().21221 (5)相反数等于它本身的数只有0 (6)符号不同的两个数互为相反数 3.判断:4.先写出下列各数,再把写出的数在数轴上表示出来(1)-3的相反数;(2)0的相反数;(3)相反数是的数;(4)相反数是-0.5的数122解:(1)-3的相反数是3;(2)0的相反数是0;(3)相反数是 的数是 ;(4)相反数是-0.5的数是0.5,如图,在数轴上表示为:1221225.已知a,b在数轴上的位置如图所示(1)分别写出a,b的相反数(2)在数轴上分别表示a,b的相反数解:(1)a,b的相反数是-a,-b;(2)如图所示.-a-b
14、6.化简下列各式的符号,并回答问题:-(-2)=_;+(-15)=_;-(-4)=_;-(+3.5)=_;-(-5)=_.问:(1)当+5前面有2018个负号,化简后结果是多少?(2)当-5前面有2019个负号,化简后结果是多少?你能 总结出什么规律?2-15-43.55解:(1)当+5前面有2018个负号,化简后结果是+5;(2)当-5前面有2019个负号,化简后结果是+5.规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数课堂小结课堂小结相反数定义应用只有符号不同的两个数互为相反数;0的相反数是0代数意义几何意义数a的相反数是-a两个互为相反数的数在数轴上所表示的点在原点的两旁,且与原点的距离相等求某数的相反数化简:-(-a)=a如果a 表示有理数,那么a的相反数是a,a一定是负数吗?注意解:不一定,可以是正数、负数,也可以是0.见本课时练习课后作业课后作业