人教版(2024)数学七年级上册 6.3.3 余角和补角.pptx

上传人(卖家):风feng866 文档编号:7719514 上传时间:2024-08-07 格式:PPTX 页数:20 大小:13.28MB
下载 相关 举报
人教版(2024)数学七年级上册 6.3.3 余角和补角.pptx_第1页
第1页 / 共20页
人教版(2024)数学七年级上册 6.3.3 余角和补角.pptx_第2页
第2页 / 共20页
人教版(2024)数学七年级上册 6.3.3 余角和补角.pptx_第3页
第3页 / 共20页
人教版(2024)数学七年级上册 6.3.3 余角和补角.pptx_第4页
第4页 / 共20页
人教版(2024)数学七年级上册 6.3.3 余角和补角.pptx_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、6.3 角6.3.3 余角和补角余角和补角学习目标学习目标1.通过通过具体情境了解余角和补角,理解余角和补角的性质,具体情境了解余角和补角,理解余角和补角的性质,能运用它们解决相关问题,提高学生分析问题、解决问能运用它们解决相关问题,提高学生分析问题、解决问题的能力题的能力2经历观察、探究、操作等过程,发展学生的几何概念,经历观察、探究、操作等过程,发展学生的几何概念,培养学生的推理能力和语言表达能力培养学生的推理能力和语言表达能力重点重点难点难点新知导入新知导入情境导入情境导入同学们,对于三角尺,我们已经很熟悉了,我们一起来回顾一下一同学们,对于三角尺,我们已经很熟悉了,我们一起来回顾一下一

2、副三角尺各个角的度数副三角尺各个角的度数.问题:在一副三角尺中,这些角之间有什么样的数量关系呢?问题:在一副三角尺中,这些角之间有什么样的数量关系呢?请同学们准备一张长方形纸片,沿一个角折叠后,找出折痕请同学们准备一张长方形纸片,沿一个角折叠后,找出折痕与长方形的边形成的角。与长方形的边形成的角。例:如图例:如图长方形纸片的折痕与长方形的边形成了长方形纸片的折痕与长方形的边形成了4个角,个角,思考:思考:(1)1与与2有什么数量关系?有什么数量关系?(2)3与与4有什么数量关系?有什么数量关系?活动导入活动导入同学们,你们打过台球吗同学们,你们打过台球吗?请?请同学们观看一段视频:同学们观看一

3、段视频:视频导入视频导入如图所示,打台球时,选择适当的方向用白球击打红球,如图所示,打台球时,选择适当的方向用白球击打红球,反弹后的红球会直接入袋,此时反弹后的红球会直接入袋,此时1=2.这个问题可以简单地表示为右图,其中这个问题可以简单地表示为右图,其中EDC=90,那,那么图中各个角与么图中各个角与1有什么数量关系呢?有什么数量关系呢?自主探究自主探究1.请同学们阅读课本请同学们阅读课本176页思考前内容,并回答问题:页思考前内容,并回答问题:(1)余角的定义是什么?余角的定义是什么?120的角有余角吗?的角有余角吗?(2)补角的定义是什么?若补角的定义是什么?若123180,能说,能说1

4、,2,3互为补角吗互为补角吗?如果两个角的和等于如果两个角的和等于90(直角直角),就说这两个,就说这两个角互为余角,简称这两个角互余,其中一个角角互为余角,简称这两个角互余,其中一个角是另一个角的余角是另一个角的余角.120的角没有余角的角没有余角如果两个角的和等于如果两个角的和等于180(平角平角),就说这两个角互为补角,就说这两个角互为补角,简称这两个角互补,其中一个角是另一个角的补角不能,简称这两个角互补,其中一个角是另一个角的补角不能,只能是两个角互为补角只能是两个角互为补角(3)如图,如图,1290,如果将,如果将1和和2变换位置,它们变换位置,它们还互为余角吗?你能得出什么结论?

5、还互为余角吗?你能得出什么结论?2完成课本完成课本177页练习页练习1题题互为余角是否互为余角与角的位置无关,只与互为余角是否互为余角与角的位置无关,只与角的和有关角的和有关小组讨论小组讨论请同学们完成课本请同学们完成课本177页练习页练习2,3题题小组展示提疑惑提疑惑:你有什么疑惑?你有什么疑惑?知识讲解知识讲解1余角:余角:(1)定义定义:如果两个角的和等于:如果两个角的和等于90(直角直角),就说这两个角互为余角,就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角简称这两个角互余,其中一个角是另一个角的余角(2)数学语言数学语言:若:若1290,则说,则说1是是2的余角或

6、的余角或2是是1的余角或的余角或1与与2互余互余知识点知识点1 1:余角和补角的概念:余角和补角的概念(重点重点)2补角:补角:(1)定义定义:如果两个角的和等于:如果两个角的和等于180(平角平角),就说这两个角互为补,就说这两个角互为补角,简称这两个角互补,其中一个角是另一个角的补角角,简称这两个角互补,其中一个角是另一个角的补角(2)数学语言数学语言:若:若12180,则说,则说1是是2的补角或的补角或2是是1的补角或的补角或1与与2互补互补注:注:余角、补角都是成对出现的余角、补角都是成对出现的1同角同角(等角等角)的余角相等的余角相等2同角同角(等角等角)的补角相等的补角相等知识点知

7、识点2 2:余角和补角的性质:余角和补角的性质(难点难点)典例精讲典例精讲【题型一题型一】余角和补角的定义余角和补角的定义例例1:若:若A23,则,则A的余角的度数是的余角的度数是()A57 B67 C77 D157B变式:已知一个角的余角是这个角的补角变式:已知一个角的余角是这个角的补角的的 ,求这个角的度数以求这个角的度数以及这个角的余角和补角的度数及这个角的余角和补角的度数解:设这个角的度数是解:设这个角的度数是x,则这个角的余角的度数是,则这个角的余角的度数是90 x,这个角的补角的度数是这个角的补角的度数是180 x.依题意,得依题意,得90 x (180 x),解得,解得x67.5

8、,即这,即这个角的度数是个角的度数是67.5.所以这个角的余角的度数是所以这个角的余角的度数是9067.522.5,这个角的,这个角的补角的度数是补角的度数是18067.5112.5.例例2:如图所示,直线:如图所示,直线AB,CD相交于点相交于点O,因为,因为13 180,23180,所以,所以12.其推理依据是其推理依据是()A同角的余角相等同角的余角相等 B等角的余角相等等角的余角相等C同角的补角相等同角的补角相等 D等角的补角相等等角的补角相等C【题型二题型二】余角和补角的性质余角和补角的性质例例3:如图,点:如图,点A,O,E在同一条直线上,在同一条直线上,OB,OC,OD都是射都是

9、射线,线,12,1与与4互为余角互为余角(1)2与与3有何数量关系?请说明理由有何数量关系?请说明理由;解:解:(1)2390.理由:因为理由:因为1与与4互为余角,所以互为余角,所以1490.因为点因为点A,O,E在同一条直线上,所以在同一条直线上,所以AOE180,所以所以231809090.如如图,点图,点A,O,E在同一条直线上,在同一条直线上,OB,OC,OD都是射线,都是射线,12,1与与4互为余角互为余角(2)3与与4的大小有何关系?请说明理由;的大小有何关系?请说明理由;(3)试说明试说明3是是AOD的补角的补角(2)34.理由:因为理由:因为12,1490,2390,所以,所

10、以34.(3)因为因为AOE180,所以,所以4是是AOD的补角,因为的补角,因为34,所以所以3是是AOD的补角的补角课堂小结课堂小结1.我们学习了哪些知识?我们学习了哪些知识?余角余角补角补角定义定义如果两个角的和为如果两个角的和为90,就,就说这两个角互余,其中一个说这两个角互余,其中一个角是另一个角的余角角是另一个角的余角如果两个角的和为如果两个角的和为180,就说这两个角互补,其中就说这两个角互补,其中一个角是另一个角的补角一个角是另一个角的补角性质性质同角同角(等角等角)的余角相等的余角相等同角同角(等角等角)的补角相等的补角相等常见图形常见图形作用作用说明两个角相等的重要说明两个角相等的重要依据依据 课堂小结课堂小结2.用到了哪些方法和思想用到了哪些方法和思想?类比学习法,数形结合思想类比学习法,数形结合思想同学们,生活中处处皆数学,我们要善于用数学的眼光去同学们,生活中处处皆数学,我们要善于用数学的眼光去观察,用数学的思维去思考,用数学的语言去描述观察,用数学的思维去思考,用数学的语言去描述.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 人教版(2024) > 七年级上册(2024)
版权提示 | 免责声明

1,本文(人教版(2024)数学七年级上册 6.3.3 余角和补角.pptx)为本站会员(风feng866)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|