1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是(
2、)ABC2D32如图所示,将含有30角的三角板的直角顶点放在相互平行的两条直线其中一条上,若1=35,则2的度数为()A10B20C25D303要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A两点之间的所有连线中,线段最短B经过两点有一条直线,并且只有一条直线C直线外一点与直线上各点连接的所有线段中,垂线段最短D经过一点有且只有一条直线与已知直线垂直4 “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正
3、确默写出的单词个数最多的是( )ABCD5为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是16某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD7如图,ACB=90,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BFDE,与AE的延长线交于点F,若AB=6,则BF的长为()A6B7C8D108实数a、b在数轴上的对应点的位置如图
4、所示,则正确的结论是()Aa1Bab0Cab0Da+b09由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A3块B4块C6块D9块10有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC11如图,已知OP平分AOB,AOB60,CP2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是()A2BCD2
5、12如图,ABCD,点E在CA的延长线上.若BAE=40,则ACD的大小为( )A150B140C130D120二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,BD是O的直径,BA是O的弦,过点A的切线交BD延长线于点C,OEAB于E,且AB=AC,若CD=2,则OE的长为_14一个n边形的内角和为1080,则n=_.15如图,AB是O的直径,AB=2,点C在O上,CAB=30,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为_ 16如图,在矩形ABCD中,AB=2,AD=6,EF分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连
6、接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为_17已知一组数据3,x,2, 3,1,6的众数为3,则这组数据的中位数为_18如图,在RtABC中,E是斜边AB的中点,若AB10,则CE_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运
7、动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF,求证:CGBF20(6分) “校园手机”现象越来越受到社会的关注“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?21(6分)下表中给出了变量x,与y=ax2,y=ax2+b
8、x+c之间的部分对应值,(表格中的符号“”表示该项数据已丢失)x101ax21ax2+bx+c72(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当ADM与BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出BAD和DCO的数量关系,并说明理由22(8分)(5分)计算:23(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”当的半径为1时在点、中,的“特征点”是_;点P在直线上,若点P为的“特征点”求
9、b的取值范围;的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围24(10分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”. (1)已知点A的坐标为,若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;点C在直线x5上,且点C为点A,B的“和谐点”,求直线AC的表达式.(2)O的半径为r,点为点、的“和谐点”,且DE2,若使得与O有交点,画出示意图直接写出半径r的取值范围.25
10、(10分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?26(12分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切
11、时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标27(12分)顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系
12、式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据等边三角形的性质得到A=60,再利用圆周角定理得到BOC=120,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60,BOC=2A=120,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得B
13、OC=120是解决问题的关键2、C【解析】分析:如图,延长AB交CF于E,ACB=90,A=30,ABC=601=35,AEC=ABC1=25GHEF,2=AEC=25故选C3、B【解析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故选:B【点睛】本题考查了“两点确定一条直线”的公理,难度适中4、C【解析】分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.详解:在四位同学中,
14、M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.故选C.点睛:考查函数的图象,正确理解题目的意思是解题的关键.5、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2=2故选A6、A【解析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,
15、符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.7、C【解析】 ACB=90,D为AB的中点,AB=6,CD=AB=1又CE=CD,CE=1,ED=CE+CD=2又BFDE,点D是AB的中点,ED是AFB的中位线,BF=2ED=3故选C8、C【解析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案【详解】选项A,从数轴上看出,a在1与0之间,1a0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,a0,b0,ab0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,ab,即
16、ab0,故选项C符合题意;选项D,从数轴上看出,a在1与0之间,1b2,|a|b|,a0,b0,所以a+b|b|a|0,故选项D不合题意故选:C【点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.9、B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体故选B10、B【解析】【分析】观察图象可知园丁与入
17、口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.11、C【解析】由OP平分AOB,AOB=60,CP=2,CPOA,易得OCP是等腰三角形,COP=30,又由含30角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角
18、三角形斜边上的中线等于斜边的一半,即可求得DM的长【详解】解:OP平分AOB,AOB=60,AOP=COP=30,CPOA,AOP=CPO,COP=CPO,OC=CP=2,PCE=AOB=60,PEOB,CPE=30,CE=CP=1,PE=,OP=2PE=2,PDOA,点M是OP的中点,DM=OP=故选C考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理12、B【解析】试题分析:如图,延长DC到F,则ABCD,BAE=40,ECF=BAE=40.ACD=180-ECF=140.故选B考点:1.平行线的性质;2.平角性质.二、填空题:(本大题共6个小题,每小题4分,共
19、24分)13、【解析】连接OA,所以OAC90,因为ABAC,所以BC,根据圆周角定理可知AOD2B2C,故可求出B和C的度数,在RtOAC中,求出OA的值,再在RtOAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知OAC90,ABAC,BC,根据圆周角定理可知AOD2B2C,OAC90CAOD90,C2C90,故C30B,在RtOAC中,sinC,OC2OA,OAOD,ODCD2OA,CDOA2,OBOA,OAEB30,在RtOAE中,sinOAE,OA2OE,OEOA,故答案为.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出
20、OA的值,从而利用直角三角形的三角函数的运用求出答案.14、1【解析】直接根据内角和公式计算即可求解.【详解】(n2)110=1010,解得n=1故答案为1【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.15、【解析】作出D关于AB的对称点D,则PC+PD的最小值就是CD的长度,在COD'中根据边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D,连接OC,OD',CD'.又点C在O上,CAB=30,D为弧BC的中点,即,BAD'=CAB=15.CAD'=45.COD'=90.则COD'是等腰直角三角形.OC=OD
21、9;=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.16、1或12【解析】当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值【详解】解:如图1所示:由翻折的性质可知PF=CF=1,ABFE为正方形,边长为2,AF=2PA=12如图2所示:由翻折的性质可知PF=FC=1ABFE为正方形,BE为AF的垂直平分线AP=PF=1故答案为:1或12【点睛】本题主
22、要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键17、【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个详解:3,x,1, 3,1,6的众数是3,x=3,先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,这组数的中位数是=1故答案为: 1点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定
23、中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.18、5【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.考点:直角三角形斜边上的中线三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)y=x24x3;y=x;t= 或;(2)证明见解析.【解析】(1)把A(3,0),B(1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;由题意得OP=2t,P(2t,0),过Q作QHx轴于H,得OH=HQ=t,可得Q(t,t),直线 PQ为yx2t,过
24、M作MGx轴于G,由,则2PGGH,由,得, 于是,解得,从而求出M(3t,t)或M(),再分情况计算即可; (2) 过F作FHx轴于H,想办法证得tanCAG=tanFBH,即CAG=FBH,即得证.【详解】解:(1)把A(3,0),B(1,0)代入二次函数解析式得解得y=x24x3;由AC=OA知C点坐标为(-3,-3),直线OC的解析式y=x;OP=2t,P(2t,0),过Q作QHx轴于H,QO=,OH=HQ=t, Q(t,t),PQ:yx2t,过M作MGx轴于G,,2PGGH,即, , M(3t,t)或M()当M(3t,t)时:,当M()时:,
25、综上:或(2)设A(m,0)、B(n,0),m、n为方程x2bxc=0的两根,m+n=b,mnc,yx2+(m+n)xmn(xm)(xn),E、F在抛物线上,设、,设EF:ykx+b, , ,令xmAC=,又,tanCAG=,另一方面:过F作FHx轴于H, tanFBH=tanCAG=tanFBH CAG=FBH CGBF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.20、(1)答案见解析(2)36(3)4550名【解析
26、】试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解(1)这次调查的家长人数为8020%=400人,反对人数是:400-40-80=280人,;(2)360=36;(3)反对中学生带手机的大约有6500=4550(名)考点:1.条形统计图;2.用样本估计总体;3.扇形统计图21、 (1) y=x24x+2;(2) 点B的坐标为(5,7);(1)BAD和DCO互补,理由详见解析.【解析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(1,7)、(0,2)在抛物线y=x2+bx+
27、c上可求出b、c的值,此题得解;(2)由ADM和BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作ANx轴,交BD于点N,则AND=DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合ABD=NBA,可证出ABDNBA,根据相似三角形的性质可得出ANB=DAB,再由ANB+AND=120可得出DAB+DCO=120,即BAD
28、和DCO互补【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(1,7)、(0,2)代入y=x2+bx+c,得:,解得:,抛物线的表达式为y=x24x+2;(2)ADM和BDM同底,且ADM与BDM的面积比为2:1,点A到抛物线的距离与点B到抛物线的距离比为2:1抛物线y=x24x+2的对称轴为直线x=2,点A的横坐标为0,点B到抛物线的距离为1,点B的横坐标为1+2=5,点B的坐标为(5,7)(1)BAD和DCO互补,理由如下:当x=0时,y=x24x+2=2,点A的坐标为(0,2),y=x24x+2=(x2)22,点D的坐标为(2,2)过点A作ANx轴,交BD于点N,则AND=DC
29、O,如图所示设直线BD的表达式为y=mx+n(m0),将B(5,7)、D(2,2)代入y=mx+n,解得:,直线BD的表达式为y=1x2当y=2时,有1x2=2,解得:x=,点N的坐标为(,2)A(0,2),B(5,7),D(2,2),AB=5,BD=1,BN=,=又ABD=NBA,ABDNBA,ANB=DABANB+AND=120,DAB+DCO=120,BAD和DCO互补【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键
30、;证明ABDNBA是解(1)的关键.22、【解析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答试题解析:原式=考点:1实数的运算;2零指数幂;3负整数指数幂;4特殊角的三角函数值23、(1)、;(2)或,【解析】据若,则点P为的“特征点”,可得答案;根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案【详解】解:,点是的“特征点”;,点是的“特征点”;,点不是的“特征点”;故答案为、如图1,在上,若存在的“特征点”点P,点O到直线的距离直线交y轴
31、于点E,过O作直线于点H因为在中,可知可得同理可得的取值范围是:如图2,设C点坐标为,直线,线段MN上的所有点都不是的“特征点”,即,解得或,点C的横坐标的取值范围是或,故答案为 :(1)、;(2)或,【点睛】本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了24、(1)点C坐标为或;yx2或yx3;(2)或【解析】(1)根据“和谐点”的定义即可解决问题;首先求出点C坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题【详解】(1)如图1观察图象可知满足条件的点C坐
32、标为C(1,5)或C'(3,5);如图2由图可知,B(5,3)A(1,3),AB=3ABC为等腰直角三角形,BC=3,C1(5,7)或C2(5,1)设直线AC的表达式为y=kx+b(k0),当C1(5,7)时,y=x+2,当C2(5,1)时,y=x+3综上所述:直线AC的表达式是y=x+2或y=x+3(2)分两种情况讨论:当点F在点E左侧时:连接OD则OD=,当点F在点E右侧时:连接OE,ODE(1,2),D(1,3),OE=,OD=,综上所述:或【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解
33、决问题,学会用分类讨论的首先思考问题,属于中考压轴题25、(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元根据题意得:=2,解得:x=7.5,经检验,x=7.5为分式方程的解,x+2.5=1答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(131)a+(
34、9.57.5)(2a+4)120,解得:a16,a为正整数,a取最小值2答:最少购进A品牌工具套装2套点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.26、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作
35、GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B
36、作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N
37、,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=
38、2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+
39、OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 &nbs
40、p;解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) &nb
41、sp; 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性27、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设
42、直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键