1、2024-2025学年海南省临高县临高中学初三数学试题中考原创全真模拟考试试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算(ab2)3的结果是()A3ab2Ba3b6Ca3b5Da3b62已知关于x的不等式3x
2、m+10的最小整数解为2,则实数m的取值范围是()A4m7B4m7C4m7D4m73剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()ABCD4如图,A、B、C是O上的三点,B=75,则AOC的度数是( )A150B140C130D1205已知数a、b、c在数轴上的位置如图所示,化简|a+b|cb|的结果是()Aa+bBacCa+cDa+2bc6边长相等的正三角形和正六边形的面积之比为( )A13B23C16D17如图是由4个相同的正方体搭成的几何体,则其俯视图是( )ABCD8数据3、6、7、1、7、2、9的中位数和众数分别是()A1和7B1和9C6和7D6和99下列函数中,
3、当x0时,y值随x值增大而减小的是()Ayx2Byx1CD10学校为创建“书香校园”购买了一批图书已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A=100B=100C=100D=100二、填空题(共7小题,每小题3分,满分21分)11分解因式:_12已知在RtABC中,C90,BC5,AC12,E为线段AB的中点,D点是射线AC上的一个动点,将ADE沿线段DE翻折,得到ADE,当A
4、DAB时,则线段AD的长为_13为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买_个14如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB8,CD2,则EC的长为_15的相反数是_,的倒数是_16如图,直线ykx与双曲线y(x0)交于点A(1,a),则k_17在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度若设原计划每天修路xm,则根据题意可得方程 三、解答题(共7
5、小题,满分69分)18(10分)如图,AB是O的直径,AC是O的切线,BC与O相交于点D,点E在O上,且DE=DA,AE与BC交于点F(1)求证:FD=CD;(2)若AE=8,tanE=,求O的半径19(5分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香2.43玫瑰22.5(1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式(收益=销售额成本)(2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?20(8分)如图,以AB边为直径的O经过点P,
6、C是O上一点,连结PC交AB于点E,且ACP=60,PA=PD试判断PD与O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CECP的值21(10分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶(1)由定义知,取AB中点N,连结MN,MN与AB的关系是_(2)抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_(3)抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在
7、此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由22(10分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA在x轴上,BC与y
8、轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 23(12分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立
9、即回去于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?24(14分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式;
10、 (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据积的乘方与幂的乘方计算可得【详解】解:(ab2)3=a3b6,故选D本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则2、A【解析】先解出不等式,然后根据最小整数解为2得
11、出关于m的不等式组,解之即可求得m的取值范围【详解】解:解不等式3xm+10,得:x,不等式有最小整数解2,12,解得:4m7,故选A本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键3、D【解析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D此题主要考查了中心对称图形
12、,关键是掌握中心对称图形的定义4、A【解析】直接根据圆周角定理即可得出结论【详解】A、B、C是O上的三点,B=75,AOC=2B=150故选A5、C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可【详解】解:通过数轴得到a0,c0,b0,|a|b|c|,a+b0,cb0|a+b|cb|=a+bb+c=a+c,故答案为a+c故选A6、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a过A作ADBC于D,则BAD=30,AD=ABcos30=1a=a,SABC=BCAD=1aa=a1连接OA、OB,过O作ODABAOB=20,AOD=30,O
13、D=OBcos30=1a=a,SABO=BAOD=1aa=a1,正六边形的面积为:2a1, 边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2故选C点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键7、A【解析】试题分析:从上面看是一行3个正方形故选A考点:三视图8、C【解析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数【详解】解:7出现了2次,出现的
14、次数最多,众数是7;从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,中位数是6故选C本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义9、D【解析】A、yx2,对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误B、k0,y随x增大而增大,故此选项错误C、B、k0,y随x增大而增大,故此选项错误D、y=(x0),反比例函数,k0,故在第一象限内y随x的增大而减小,故此选项正确10、B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案【详解】科普类图书平均每本的价格是
15、x元,则可列方程为:=100,故选B【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、 (a+1)(a-1)【解析】根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.12、或【解析】延长AD交AB于H,则AHAB,然后根据勾股定理算出AB,推断出ADHABC,即可解答此题同的解题思路一样【详解】解:
16、分两种情况:如图1所示:设ADx,延长AD交AB于H,则AHAB,AHDC90,由勾股定理得:AB13,AA,ADHABC,即,解得:DHx,AHx,E是AB的中点,AEAB,HEAEAHx,由折叠的性质得:ADADx,AEAE,sinAsinA ,解得:x ;如图2所示:设ADADx,ADAB,AHE90,同得:AEAE,DHx,AHADDHxx,cosAcosA ,解得:x ;综上所述,AD的长为 或故答案为 或此题考查了勾股定理,三角形相似,关键在于做辅助线13、1【解析】设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之
17、取其中的最大整数即可【详解】设购买篮球x个,则购买足球个,根据题意得:,解得:为整数,最大值为1故答案为1本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键14、【解析】设O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长【详解】连接BE,设O半径为r,则OA=OD=r,OC=r-2,ODAB,ACO=90,AC=BC=AB=4,在RtACO中,由勾股定理得:r2=42+(r-2)2,r=5,AE=2r=10,AE为O的直径,ABE=90,由勾股定理得:BE=6,在RtECB中,EC.故答案是:.考查的是垂径定理及勾股定理,根据题意作出
18、辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键15、2,【解析】试题分析:根据相反数和倒数的定义分别进行求解,2的相反数是2,2的倒数是.考点:倒数;相反数16、1【解析】解:直线y=kx与双曲线y=(x0)交于点A(1,a),a=1,k=1故答案为117、.【解析】试题解析:原计划用的时间为: 实际用的时间为: 可列方程为: 故答案为三、解答题(共7小题,满分69分)18、(1)证明见解析;(2);【解析】(1)先利用切线的性质得出CAD+BAD=90,再利用直径所对的圆周角是直角得出B+BAD=90,从而可证明B=EAD,进而得出EAD=CAD,进而判断出ADFADC,即可得出
19、结论;(2)过点D作DGAE,垂足为G依据等腰三角形的性质可得到EG=AG=1,然后在RtGEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在RtABD中,依据锐角三角函数的定义可求得AB的长,从而可求得O的半径的长【详解】(1)AC 是O 的切线,BAAC,CAD+BAD=90,AB 是O 的直径,ADB=90,B+BAD=90,CAD=B,DA=DE,EAD=E,又B=E,B=EAD,EAD=CAD,在ADF和ADC中,ADF=ADC=90,AD=AD,FAD=CAD,ADFADC,FD=CD(2)如下图所示:过点D作DGAE,垂足为GDE=AE,D
20、GAE,EG=AG=AE=1tanE=,=,即=,解得DG=1ED=2B=E,tanE=,sinB=,即,解得AB=O的半径为本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键19、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩【解析】(1)根据题意和表格中的数据可得到y关于x的函数;(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.【详解】(1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15即y关于x的函数关系式为y=0.1x+15(2)由题意得2.
21、4x+2(30-x)70解得x25,y=0.1x+15当x=25时,y最大=17.530-x=5,要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.20、(1)PD是O的切线证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得AOP=2ACP=120,然后计算出PAD和D的度数,进而可得OPD=90,从而证明PD是O的切线;(2)连结BC,首先求出CAB=ABC=APC=45,然后可得AC长,再证明CAECPA,进而可得,然后可得CECP的值试题解析:(1)如图,PD是O的切线证明如下:连
22、结OP,ACP=60,AOP=120,OA=OP,OAP=OPA=30,PA=PD,PAO=D=30,OPD=90,PD是O的切线(2)连结BC,AB是O的直径,ACB=90,又C为弧AB的中点,CAB=ABC=APC=45,AB=4,AC=Absin45=C=C,CAB=APC,CAECPA,CPCE=CA2=()2=1考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型21、(1)MN与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三
23、角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a
24、(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键22、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E,CFOD交x轴于F求出OE、OF、CF、OD、BE即
25、可解决问题;如图2-2中,作BEOD交OA于E,作PMOD交OA于M利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1,),故答案为(2,0),(1,),(1,);如图22
26、中,作BEOD交OA于E,作PMOD交OA于M,ODBE,ODPM,BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120,OMy轴,MOA=30,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120,MKO=60,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当EN=1时,ME=+1,观察图象可知当M的半径r的取值范
27、围为1r+1故答案为:1r+1本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题23、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x288(24x40);(3)二人互相看不见的时间有7.1分钟【解析】分析:(1)根据速度=路程时间可求出小芳上山的速度;根据速度=路程时间+小芳的速度可求出爸爸上山的速度;(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,
28、再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论详解:(1)小芳上山的速度为1206=20(m/min),爸爸上山的速度为120(216)+20=28(m/min)答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min(2)(2820)(24+621)=72(m),点C的坐标为(30,72);二人返回山下的时间相差4min,444=40(min),点D的坐标为(40,192)设爸爸下山时CD段的函数解析式为y=kx+b,将C(30
29、,72)、D(40,192)代入y=kx+b,解得:答:爸爸下山时CD段的函数解析式为y=12x288(24x40)(3)设DE段的函数解析式为y=mx+n,将D(40,192)、E(44,0)代入y=mx+n,解得:,DE段的函数解析式为y=48x+2112(40x44)当y=12x288120时,34x40;当y=48x+2112120时,40x41.141.134=7.1(min)答:二人互相看不见的时间有7.1分钟点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法
30、求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围24、(1)二次函数的表达式为:y=x24x+3;(2)点P的坐标为:(0,3+3)或(0,33)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【解析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当PBC为等腰三角形时分三种情况进行讨论:CP=CB;BP=BC;PB=PC
31、;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2t,SMNB=(2t)2t=t2+2t,把解析式化为顶点式,根据二次函数的性质即可得MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令y=0,则x24x+3=0,解得:x=1或x=3,B(3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当PB=PC时,OP=OB=3,P3(0,-3);当BP=BC时,OC=OB=3此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,33)或(3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2t,则DN=2t,SMNB=(2t)2t=t2+2t=(t1)2+1,当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处