2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学.doc

上传人(卖家):知识图书馆 文档编号:8117283 上传时间:2024-12-03 格式:DOC 页数:20 大小:1.98MB
下载 相关 举报
2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学.doc_第1页
第1页 / 共20页
2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学.doc_第2页
第2页 / 共20页
2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学.doc_第3页
第3页 / 共20页
2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学.doc_第4页
第4页 / 共20页
2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学试题注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设非零向量,满足,且与的夹角为,则“”是“”

2、的(    )A充分非必要条件B必要非充分条件C充分必要条件D既不充分也不必要条件2函数的图象可能是下列哪一个?(    )ABCD3中,角的对边分别为,若,则的面积为(    )ABCD4在中,内角的平分线交边于点,则的面积是(    )ABCD5已知命题p:直线ab,且b平面,则a;命题q:直线l平面,任意直线m,则lm.下列命题为真命题的是(    )ApqBp(非q)C(非p)qDp(非q)6若,则下列不等式不能成立的是(    )ABCD7已知的值域为,当正数a,b

3、满足时,则的最小值为(    )AB5CD98已知是定义是上的奇函数,满足,当时, ,则函数在区间上的零点个数是(     )A3B5C7D99中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有(    )种.A408B120C156D24010已

4、知数列是公比为的正项等比数列,若、满足,则的最小值为(    )ABCD11已知向量,则与的夹角为(    )ABCD12已知函数,若,且 ,则的取值范围为(    )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为_.14函数的值域为_15已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为_.16已知向量,若,则实数_.三、解答题:共70分。解答应写出文

5、字说明、证明过程或演算步骤。17(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.18(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.19(12分)某景点上山共有级台阶,寓意长长久久甲上台阶时,可

6、以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率20(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值21(12分)已知数列的前项和为,且满足()求数列的通项公式;()证明:

7、22(10分)已知函数(1)解不等式;(2)若函数存在零点,求的求值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用数量积的定义可得,即可判断出结论【详解】解:,解得,解得, “”是“”的充分必要条件故选:C本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题2A【解析】由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.【详解】由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常

8、见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.3A【解析】先求出,由正弦定理求得,然后由面积公式计算【详解】由题意,由得,故选:A本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解4B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,

9、在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.5C【解析】首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.本小题主要考查线面平

10、行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.6B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.本题考查不等关系和不等式,属于基础题.7A【解析】利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.【详解】解:的值域为,当且仅当时取等号,的最小值为.故选:A.本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.8D【解析】根据是定义是上的

11、奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得 ,利用周期性可得函数在区间上的零点个数【详解】是定义是上的奇函数,满足, ,可得,函数的周期为3,当时, ,令,则,解得或1,又函数是定义域为的奇函数,在区间上,有由,取,得 ,得,又函数是周期为3的周期函数,方程=0在区间上的解有 共9个,故选D本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题9A【解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【

12、详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题10B【解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,

13、讨论、取值.当且时,的最小值为.故选:B本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题11B【解析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.12A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当

14、时,函数取得最小值,当时,;当时,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到  ,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得  ,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即  ,因为,所以 ,因为,所以

15、,所以,即,而,因为,所以在上递增,所以.故答案为:本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.14【解析】利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案【详解】由题意,可得,令,即,则,当时,当时,即在为增函数,在为减函数,又,故函数的值域为:本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题15【解析】连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接

16、,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,则,当点的横坐标时,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.16-2【解析】根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【详解】由题意得:    ,解得:本题正确结果:本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2)当值为时,无盖三棱锥容器

17、的容积最大.【解析】(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,则,写出三角形面积,求其平方导数的最值,则答案可求【详解】解:(1)由题意,为等腰直角三角形,又,恰好是该零件的盖,则,由图甲知,则在图乙中,又,平面,平面,;(2)由题意知,在等腰三角形中,则,令,可得:当时,当,时,当时,有最大值由(1)知,平面,该三棱锥容积的最大值为,且当时,取得最大值,无盖三棱锥容器的容积最大答:当值为时,无盖三棱锥容器的容积最大本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题18(1)(2)直线过定点

18、【解析】设.(1)由题意知,.设直线的方程为,由得,则,由根与系数的关系可得,所以.由,得,解得.所以抛物线的方程为.(2)设直线的方程为,由得,由根与系数的关系可得, 所以,解得.所以直线的方程为,所以时,直线过定点.19见解析【解析】(1)由题可得的所有可能取值为,且,所以的分布列为所以的数学期望(2)由题可得,所以,又,所以,所以是以为首项,为公比的等比数列(3)由(2)可得20(1)证明见解析;(2)存在,.【解析】(1)根据题意证出,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【详解】(1

19、)证明:在正方形ABCD中,M,N分别是AB,AD的中点,.又,.为等边三角形,N是AD的中点,.又平面平面ABCD,平面PAD,平面平面,平面ABCD.又平面ABCD,.平面PNB,平面PNB.(2)解:存在.如图,连接AC交DM于点Q,连接EQ.平面DEM,平面PAC,平面平面,.在正方形ABCD中,且.,.故.所以棱PA上存在点E,使平面DEM,此时,E是棱A的靠近点A的三等分点.本题考查了线面垂直的判定定理、线面平行的性质定理,考查了学生的推理能力以及空间想象能力,属于空间几何中的基础题.21(),()见解析【解析】(1)由,分和两种情况,即可求得数列的通项公式;(2)由题,得,利用等

20、比数列求和公式,即可得到本题答案.【详解】()解:由题,得当时,得;当时,整理,得数列是以1为首项,2为公比的等比数列,;()证明:由()知,故故得证本题主要考查根据的关系式求通项公式以及利用等比数列的前n项和公式求和并证明不等式,考查学生的运算求解能力和推理证明能力.22(1)或 ;(2)【解析】(1)通过讨论的范围,将绝对值符号去掉,转化为求不等式组的解集,之后取并集,得到原不等式的解集;(2)将函数零点问题转化为曲线交点问题解决,数形结合得到结果.【详解】(1)有题不等式可化为,当时,原不等式可化为,解得;当时,原不等式可化为,解得,不满足,舍去;当时,原不等式可化为,解得,所以不等式的解集为(2)因为,所以若函数存在零点则可转化为函数与的图像存在交点,函数在上单调增,在上单调递减,且.数形结合可知该题考查的是有关不等式的问题,涉及到的知识点有分类讨论求绝对值不等式的解集,将零点问题转化为曲线交点的问题来解决,数形结合思想的应用,属于简单题目.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 模拟试题
版权提示 | 免责声明

1,本文(2024-2025学年四川省成都市金牛区外国语学校招生全国统一考试4月(二诊)调研测试(康德版)数学.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|