ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:231KB ,
文档编号:1177654      下载积分:1 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1177654.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(永遠守護你)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第十七章专题整合训练(教案).doc)为本站会员(永遠守護你)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第十七章专题整合训练(教案).doc

1、本章专题整合训练本章专题整合训练 【知识与技能】 进一步感受勾股定理及其逆定理,能用它们解决问题. 【过程与方法】 在经历“知识回顾问题与思考问题探究”过程中,进一步增强学生 分析问题、解决问题的能力,体验数形结合的思想,锻炼解题技能. 【情感态度】 进一步培养学生的合作交流意识和探究精神,激发学习数学的兴趣. 【教学重点】 勾股定理及其逆定理解决问题. 【教学难点】 用勾股定理的逆命题证明几何问题. 一、知识回顾,整体把握 1.勾股定理:直角三角形中,两直角边的平方和等于斜边的平方. 2.勾股数:满足 a 2+b2=c2的三个正整数 a,b,c 称为一组勾股数. 3.勾股定理的逆定理:在一个

2、三角形中,如果满足两条边的平方和等于第三 边的平方,那么这个三角形是直角三角形. 4.互逆命题、互逆定理. 【教学说明】师生共同回顾本章知识,教师扼要板书,加深学生理解. 二、释疑解惑,加深理解 1.勾股定理及其逆定理的证明方法是怎样的, 它们各是怎样体现数形结合的 思想的,谈谈你的理解. 2.已知一个三角形三边长,就能判断它是不是直角三角形,你能举个例子 吗? 3.如果一个命题成立,它的逆命题一定成立吗?请举例说明. 【教学说明】教师展示问题,师生共同回顾,加深认识. 三、典例精析,复习新知 例例 1 1 (1)下列每一组数据中的三个数值分别为三角形三边长,不能构成直 角三角形的是( ) A

3、.3,4,5 B.6,8,10 C.3 ,2,5 D.5,12,13 (2)如图,每个小正方形的边长为 1,A,B,C 是小正方形的顶点,则ABC 的度数是( ) A.90 B.60 C.45 D.30 【分析】 (1)中可直接将选项中三个数据的两个较小数的平方和与最大数的 平方进行比较,易知以 C 选项中三个数据3 ,2,5为三边的三角形不是直角 三角形,故选 C; (2)中,由于给出了小正方形的边长为 1,因而可利用勾股定 理分别求出线段 AB、BC 和 AC(应连接 AC)的长,再利用勾股定理的逆定理判断 ABC 的形状后可得到结论.AB 2=12+32=10,CB2=12+22=5,C

4、A2=12+22=5,ABC 是等腰直角三角形,且ACB=90,故ABC=45,应选 C. 例例 2 2 如图 1,在梯形 ABCD 中,ABDC,ADC+BCD=90且 DC=2AB,分 别以 DA,AB,BC 为边向梯形外作正方形,其面积分别为 S1,S2,S3,则 S1,S2,S3之 间的关系是 . 【分析】如图 2,过点 A 作 AEBC 交 CD 于点 E,连接 AC,则EAC=ACB. 由 ABCD 知BAC=ACE,AC=AC, ABCAEC,AB=CE,AE=BC. 由 CD=2AB=CE+DE 知 DE=CE=AB. 由 AEBC 知AED=BCD,而ADC+BCD=90,

5、ADC+AED=90, DAE=90,即ADE 为直角三角形, DE 2=AD2+AE2,即 AB2=AD2+BC2,即 S 2=S1+S3. 例例 3 3 如图,已知 AB=12,ABBC 于 B,ABAD 于 A,AD=5,BC=10,点 E 为 CD 的中点,则 AE 的长为. 【分析】可过 E 作 EMAD 于 M,交 BC 于 N, E 为 CD 中点,从而易得 RtDMERtCNE, 而 DM=NC= 1 2 (AD+BC)=15 2 ,AM=15 2 -5= 5 2 . 又 EM=EN= 1 2 AB=6, 故在 RtAEM 中,有 AE 2=AM2+EM2=(5 2 ) 2+6

6、2=25 4 +36=169 4 ,AE=13 2 . 例例 4 4 已知,如图,在四边形 ABCD 中.ABC=90,CDAD 于点 D,且 CD 2+AD2=2AB2. (1)求证 AB=BC; (2)当 BEAD 于点 E 时,试证明:BE=AE+CD. 【分析】 (1)由条件 CD 2+AD2=2AB2, 并结合图形, 有 CD2+AD2=AC2, 又 AC2AB2+BC2 (连接 AC) ,从而 2AB 2=AB2+BC2,有 BC=AB(勾股定理功不可没) ; (2)过 C 作 CFBE 于 F,由 AB=BC,ABE=BCF,AEB=CFB,知ABE BCF,有 BF=AE,且

7、CD=FE,故 BE=BF+FE=AE+CD. 例例 5 5 如图,点 P 为正方形 ABCD 内一点,且 PA=1,PB=2,PC=3,求APB 的度数. 解: 将APB 绕点 B 顺时针旋转 90, 至BPC 位置, 连 PP (如图所示) , 易知 BP=BP2,PBP=90,且BPA=BPC,PC=PA=1. 在 RtBPP中,有 BP 2+BP2=PP2,即 PP2=22+22=8.又 PC=1. PP2+PC 2=8+1=9,而 PC=3, PC 2=9.故PPC 为直角三角形,且PPC=90. 又 BP=BP,PBP=90, BPP=45,故BPC=45+90=135,从而APB=135. 【教学说明】例 1、例 2 可由学生独立完成,例 3、4、5 由师生共同探究获 得结论,通过问题解决加深对勾股定理及其逆定理的理解和运用. 四、师生互动,课堂小结 通过这节课的学习, 你对勾股定理及其逆定理是否有更深的认识?你还有哪 些疑问?与同伴交流. 1.布置作业:从教材“复习题 17”中选取. 2.完成练习册中本课时练习. 本章的复习应紧紧围绕 “勾股定理” 这个中心, 师生一起共同回顾本章知识, 并安排学生进行交流.教师及时发现问题并予以解答.此外, 教案中安排的五个例 题应先让学生试着解答,教师再予以点拨,以达到复习的效果.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|