ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:605KB ,
文档编号:1318481      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1318481.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(副主任)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2020-2021上海市松江区高三数学二模试卷及答案2021.4.doc)为本站会员(副主任)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2020-2021上海市松江区高三数学二模试卷及答案2021.4.doc

1、高三数学 第 1 页 共 10 页 松江区 2020-2021 第二学期模拟考质量监控试卷 高三数学 (满分 150 分,完卷时间 120 分钟) 20214 考生注意: 1本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答题必须涂(选择 题)或写(非选择题)在答题纸上,做在试卷上一律不得分。 2答题前,务必在答题纸上填写学校、班级、姓名和考号。 3答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。 一、填空题一、填空题(本大题满分(本大题满分 5454 分)本大题共有分)本大题共有 1212 题,题,第第 1 16 6 题题每个空格填对得每个空格填对得 4 4 分,分

2、,第第 7 7 1212 题题每个每个空格填对得空格填对得 5 5 分,否则一律得零分分,否则一律得零分 1已知集合11Ax x,1,2,3B ,则AB 2若复数z满足(1i)2z(i为虚数单位) ,则z 3已知向量(4, 2)a ,( ,2)bk,若ab,则实数k= 4在 6 (2)x的二项展开式中, 3 x项的系数为 (结果用数值表示) 5如图所示,在平行六面体 1111 ABCDABC D中, 1111 ACB DF,若 1 AFxAByADzAA , 则xyz= 6若函数( )f xxa的反函数的图像经过点(2,1), 则a= 7已知一个正方体与一个圆柱等高,且侧面积相等,则这个正方体

3、和圆柱的体积之比为 8因新冠肺炎疫情防控需要,某医院呼吸科准备从 5 名男医生和 4 名女医生中选派 3 人前 往隔离点进行核酸检测采样工作,选派的三人中至少有 1 名女医生的概率为 9已知函数tan() 6 yx 的图像关于点(,0) 3 对称,且1,则实数的值为 10如图,已知 AB 是边长为 1 的正六边形的一条边, 点 P 在正六边形内(含边界) ,则AP BP的取值范围是 11已知曲线 C:2 (12)xyx,若对于曲线 C 上的任意一点 ( , )P x y,都有 12 ()()0 xycxyc,则 12 cc的最小值为 A F A1 D B C B1 C1 D1 高三数学 第 2

4、 页 共 10 页 12在数列 n a中, 1 3a , 1123 1 nn aa aaa ,记 n T为数列 1 n a 的前n项和,则 lim n n T = 二、选择题二、选择题( (本大题满分本大题满分 2 20 0 分分) )本大题共有本大题共有 4 4 题,每题有且只有一个正确答案,选对得题,每题有且只有一个正确答案,选对得 5 5 分,分, 否则一律得零分否则一律得零分 13经过点(1,1),且方向向量为(1,2)的直线方程是( ) A 210 xy B 230 xy C 210 xy D 230 xy 14设,表示两个不同的平面,l表示一条直线,且l,则/ /l是/ /的( )

5、 A充分非必要条件 B必要非充分条件 C充要条件 D既非充分又非必要条件 15已知实数a、b满足(2)(1)8ab,有结论: 当0,0ab时,ab存在最大值; 当0,0ab时,ab存在最小值 正确的判断是( ) A 成立,成立 B 不成立,不成立 C 成立,不成立 D 不成立,成立 16已知函数 1 ( )2f xxa x 若存在相异的实数 12 ,(,0)x x ,使得 12 ()()f xf x成 立,则实数a的取值范围为( ) A 2 (,) 2 B (,2) C 2 (,) 2 D ( 2,) 三三、解答题(本大题满分解答题(本大题满分 7676 分)本大题共有分)本大题共有 5 5

6、题,解答下列各题必须在答题题,解答下列各题必须在答题纸相纸相应编号的应编号的 规定区域内写出必要的步骤规定区域内写出必要的步骤 17 (本题满分(本题满分 1414 分)本题共有分)本题共有 2 2 个小题,第个小题,第 1 1 小题满分小题满分 7 7 分,第分,第 2 2 小题满分小题满分 7 7 分分 如图,S是圆锥的顶点,O是底面圆的圆心,AB、CD是底面圆的两条直径, 且ABCD, 4,2SOOB,P为SB的中点 (1)求异面直线SA与PD所成角的大小(结果用反三角函数值表示) ; (2)求点S到平面PCD的距离 A B D C O P S 高三数学 第 3 页 共 10 页 18

7、(本题满分(本题满分 1414 分)本题共有分)本题共有 2 2 个小题,第个小题,第 1 1 小题满分小题满分 7 7 分,第分,第 2 2 小题满分小题满分 7 7 分分 已知函数( )22 xx f xa (a为常数,aR) (1)讨论函数( )f x的奇偶性; (2)当( )f x为偶函数时,若方程(2 )( )3fxk f x在0,1x上有实根,求实数k的取 值范围 19 (本题满分(本题满分 1414 分)本题共有分)本题共有 2 2 个小题,第个小题,第 1 1 小题满分小题满分 6 6 分,第分,第 2 2 小题满分小题满分 8 8 分分 为打赢打好脱贫攻坚战, 某村加大旅游业

8、投入, 准备将如图扇形空地AOB分隔成三部分 建成花卉观赏区, 分别种植玫瑰花、 郁金香和菊花 已知扇形的半径为100米, 圆心角为 2 3 , 点P在扇形的弧上,点Q在OB上,且/ /PQOA (1)当Q是OB的中点时,求PQ的长; (精确到米) (2)已知种植玫瑰花、郁金香和菊花的成本分别为 30 元/平方米、50 元/平方米、20 元/平方 米要使郁金香种植区OPQ的面积尽可能的大,求OPQ面积的最大值,并求此时扇形区 域AOB种植花卉的总成本 (精确到元) A B P Q O 玫瑰花区 郁金香区 菊花区 高三数学 第 4 页 共 10 页 20 (本题满分(本题满分 1 16 6 分)

9、本题共有分)本题共有 3 3 个小题,第个小题,第 1 1 小题满分小题满分 4 4 分,第分,第 2 2 小题满分小题满分 6 6 分分,第第 3 3 小小 题满分题满分 6 6 分分 已知抛物线 2 4yx的焦点为F,直线l交抛物线于不同的 A、B 两点 (1)若直线l的方程为1yx,求线段AB的长; (2)若直线l经过点( 1,0)P ,点A关于x轴的对称点为 A ,求证: A 、F、B三点共线; (3)若直线l经过点(8, 4)M,抛物线上是否存在定点N,使得以线段AB为直径的圆恒过 点N?若存在,求出点N的坐标,若不存在,请说明理由 2121 (本题满分(本题满分 1 18 8 分)

10、本题共有分)本题共有 3 3 个小题,第个小题,第 1 1 小题满分小题满分 4 4 分,第分,第 2 2 小题满分小题满分 6 6 分分,第第 3 3 小小 题满分题满分 8 8 分分 对于至少有四项的实数列 n a,若对任意的n * (,3)nNn,都存在s、t(其中 * , ,)st s tNsn tn,使得 nst aaa成立,则称数列 n a具有性质 P (1)分别判断数列1,2,3,4和数列1,0,1,2 是否具有性质P,请说明理由; (2)已知数列 n a是公差为(0)d d 的等差数列,若sin nn ba,且数列 n a和 n b都具 有性质 P,求公差d的最小值; (3)已

11、知数列| n cnab(其中ab, Nba,) ,试探求数列 n c具有性质P的充 要条件 高三数学 第 5 页 共 10 页 2021.4 松江区高三数学二模试卷参考答案 一、填空题 1 1 ; 21i; 3 1 ; 4 160; 5 2; 63; 7:4 ; 8 37 42 ;9 1 2 或1 ;10 1 ,3 4 ; 1132 2 ; 12 2 3 二、选择题 13A 14B 15C 16B 17 解: (1)连接OP, P为SB的中点,OP为ABS的中位线,/ /SAOPOPD即 为异面直线SA与PD所成角2 分 ABCD,SOCDCD 平面SOB,而OP在平面SOB内, CDOP 4

12、 分 在直角三角形OPD中,2OD , 22 111 245 222 OPSASB,5 分 22 5 tan 55 OD OPD OP , 2 5 arctan 5 OPD, 异面直线SA与PD所成的角为 2 5 arctan 5 7 分 (2)以O为坐标原点,OD、OB为x轴、y轴建立空间直角坐标系, 则(0,0,4), (0,1,2),(2,0,0)SPD, 9 分 设平面PCD的一个法向量为( , , )nu v w 由 0 0 n OP n OD ,得 20 20 vw u ,所以 0 2 u vw , 12 分 不妨取(0, 2,1)n 则点S到平面PCD的距离 44 5 55 n

13、OS d n 14 分 18. 高三数学 第 6 页 共 10 页 解: (1)()22 xx fxa 1 分 当( )f x为偶函数时,由()( )fxf x 得 2222 xxxx aa 2 分 对任意的x, (1)2(1)2 xx aa 恒成立, 10,1aa 4 分 当( )f x为奇函数时,由()( )fxf x 得 2222 xxxx aa 5 分 对任意的x, (1)(22 )0 xx a 恒成立, 10,1aa 6 分 1a 时,( )f x为偶函数;1a时,( )f x为奇函数; 1a时, ( )f x为非奇非偶函数; 7 分 (2)由已知, xx xf 22)(,令 22

14、xx t ,则由0,1x 知 5 2, 2 t8 分 则222)2( 222 txf xx 方程3)()2(xkfxf化为3)2( 2 ktt,所以 t tk 5 10 分 由于 x xy 5 在), 0( 上递增 11 分 2t时, 2 1 2 5 2 min k, 12 分 2 5 t时, 2 1 2 2 5 min k 13 分 2 1 , 2 1 k时,方程3)()2(xkfxf有解 14 分 19. 解: (1)因为扇形的半径为100M,Q是OB中点,所以 50OQ , 1 分 因为PQ OA, 2 3 AOB, 所以 3 OQP , 2 分 在OPQ中,由余弦定理,得: 222 2

15、cosOPOQPQOQ PQOQP4 分 即: 2 5075000PQPQ,所以25 25 13115PQ (米) 6 分 (2)法一:设,OQx PQy, 在OPQ中,由余弦定理,得: 222 2cosOPOQPQOQ PQOQP 即: 22 10000 xyxy 8 分 由基本不等式得: 22 xyxyxy,所以10000 xy 高三数学 第 7 页 共 10 页 而 13 sin2500 3 24 OPQ SOQ PQOQPxy 当且仅当100 xy时,OPQ的面积的最大值为2500 3, 10 分 此时OPQ为正三角形, 3 QOP ,则 3 AOP 11 分 所以 215000 23

16、 AOP SAOP OA 扇 ,2500 3 OPQ S, 5000 2500 3 3 BPQ SSSS OPQ扇AOB扇AOP 12 分 种植花卉总投入为: 250000 30502075000 3391703 3 BPQ SSS OPQ扇AOP (元) 所以, 郁金香的种植区OPQ的面积最大值为2500 3平方米, 扇形区域AOB的种植花卉的 总投入为391703(元) 14 分 20. 解:设 1 (A x, 1) y, 2 (B x, 2) y (1)联立 2 4 1 yx yx 得: 2 610 xx 2 分 由韦达定理: 12 6xx 易知直线l经过抛物线的焦点(1,0)F,由准线

17、1x 得: 1212 | | (1)(1)28ABOAOBxxxx 4 分 (2)证明:设直线l的方程为(1)yk x, 5 分 联立方程组 2 (1) 4 yk x yx ,消去y可得: 2222 (24)0k xkxk,6 分 设 1 (P x, 1) y, 2 (Q x, 2) y,则 1 (S x, 1) y, 2 12 2 42k xx k , 12 1x x , 7 分 2 2 1 FQ y k x , 1 1 1 FS y k x , 21211212 211212 (1)(1)(1)(1)2 (1) 0 11(1)(1)(1)(1) FQFS yyk xxk xxk x x k

18、k xxxxxx ,9 分 高三数学 第 8 页 共 10 页 FQFS kk,即S,F,Q三点共线 10 分 (3)假设存在定点N,设 2 0 ( 4 y N, 0) y, 22 12 12 (,), (,) 44 yy AyBy ,11 分 设直线l的方程为: (4)8xm y 联立 2 4 (4)8 yx xm y ,整理得 2 416320ymym,0, 1212 4 ,1632yym yym , 13 分 由以弦AB为直径的圆恒过点N,知0NA NB 得: 2222 0102 0102 ()()0 44 yyyy yyyy 14 分 整理得: 2 001212 ()160yyyyyy

19、 所以, 2 00 416160yymm 即: 2 00 (416)160ymy对mR恒成立。 所以, 0 4160y ,即: 0 4y 所以存在定点(4,4)N,使以弦AB为直径的圆恒过点N。 16 分 21. 解: (1)对于数列1,2,3,4,312,32 1 ,不具有性质 P 2 分 对于数列1,0,1,2,10 1,21 ( 1) ,具有性质 P 4 分 (2)数列 n a 具有性质P, 321 aaa , 1 ad 或 1 3ad . 当 1 ad 时, (2) n and, 12nnn aaa , n a具有性质P 当 1 3ad 时, 1234 3 ,2 ,0ad ad ad

20、a , n a不具有性质P (2) n and 6 分 此时 1234 sin ,0,sin ,sin2 ,bd bbd bd 有 321 bbb 由于 n b也具有性质 P 421 bbb或 431 bbb或 432 bbb 即sin2 sindd 或sin22sindd , 0sind或cos1d 或 2 1 cosd 高三数学 第 9 页 共 10 页 ()dkkZ或Zkkd, 3 , 8 分 当 3 d时, (2)2 sinsinsin() 333 nn nn ba ,此时 6nn bb , 数列 n b的 6 项为: 2 3 , 0 , 2 3 , 2 3 , 0 , 2 3 , 由

21、于 362145327865 ,bbbb bbbb bbbb 且 6nn bb ,9n时, n b也具有性质 P,符合题意. d的最小值为 3 d 10 分 (3)banan|(其中 Nbaba,) 数列 n a具有性质P,则 123 aaa或 213 aaa 11 分 baabaabaa|3|,|2|,|1| 321 |1|2|3|aaba,或|2|1|3|aaba 即baaa|1|2|3|,或baaa|2|1|3|12 分 若 1a ,则 1b 或 3b ,由于 ba , 3b 3, 1ba时, 此时4 nan, 前四项为0 , 1, 2, 3, 第四项0不是前三项中某两项之差, 舍去 1

22、3 分 2a,则 2b,由于ba ,舍去 3a ,则 1b ,此时1|3| nan.前四项为0 , 10 , 1 , 第四项0不是前三项中某两项之差,舍去 14 分 若4a,2ab或4a 2ab时,2|aanan,即 anan ann an , 22 ,2 ,前四项为2, 1, 0 , 1. 由于 anaa anaa a n n n , 3 , 31 11 ,数列 n a具有性质P16 分 4ab时,4|aanan,即 anan ann an , 42 ,4 ,前四项为0 , 1 , 2 , 3.第四项0不 是前三项中某两项之差,舍去 17 分 高三数学 第 10 页 共 10 页 数列 n a具有性质P的充要条件是2ab 且4a. 18 分

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|