ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:599.50KB ,
文档编号:1688131      下载积分:3.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1688131.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(( 高中数学讲义)二项式定理.版块二.二项展开式2求展开式中的特定项.学生版.doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

( 高中数学讲义)二项式定理.版块二.二项展开式2求展开式中的特定项.学生版.doc

1、【学而思高中数学讲义】 知识内容 1二项式定理 二项式定理 011222 . n nnnnn nnnn abC aC abC abC bn N 这个公式表示的定理叫做二项式定理 二项式系数、二项式的通项 011222 . nnnnn nnnn C aC abC abC b 叫做 n ab的二项展开式,其中的系数 0, 1, 2, ., r n Crn叫做二项式系数,式中的 rn rr n C ab 叫做二项展开式的通项,用 1r T 表示, 即通项为展开式的第1r 项: 1 rn rr rn TC ab 二项式展开式的各项幂指数 二项式 n ab的展开式项数为1n 项,各项的幂指数状况是 各项

2、的次数都等于二项式的幂指数n 字母a的按降幂排列,从第一项开始,次数由n逐项减 1 直到零,字母b按升幂排列,从 第一项起,次数由零逐项增 1 直到n 几点注意 通项 1 rn rr rn TC ab 是 n ab的展开式的第1r 项,这里0, 1, 2, .,rn 二项式 n ab的1r 项和 n ba的展开式的第1r 项 rn rr n C ba 是有区别的, 应用二项式 定理时,其中的a和b是不能随便交换的 注意二项式系数( r n C)与展开式中对应项的系数不一定相等,二项式系数一定为正,而 项的系数有时可为负 求展开式中的特定项 【学而思高中数学讲义】 通项公式是 n ab这个标准形

3、式下而言的,如 n ab的二项展开式的通项公式是 1 1 r rn rr rn TC ab (只须把b看成b代入二项式定理)这与 1 rn rr rn TC ab 是不同的,在这 里对应项的二项式系数是相等的都是 r n C,但项的系数一个是1 r r n C,一个是 r n C,可看出, 二项式系数与项的系数是不同的概念 设1,abx,则得公式: 122 11. n rrn nnn xC xC xC xx 通项是 1r T rn rr n C ab 0, 1, 2, .,rn中含有 1, , r Ta b n r 五个元素, 只要知道其中四个即可求第五个元素 当n不是很大,x比较小时可以用展

4、开式的前几项求(1)nx的近似值 2二项式系数的性质 杨辉三角形: 对于n是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可 以直接用杨辉三角计算 杨辉三角有如下规律: “左、 右两边斜行各数都是 1 其余各数都等于它肩上两个数字的和 ” 二项式系数的性质: n ab展开式的二项式系数是: 012 , ., n nnnn CCCC,从函数的角度看 r n C可以看成是r为自 变量的函数 f r,其定义域是:0, 1, 2, 3, ., n 当6n 时, f r的图象为下图: 这样我们利用 “杨辉三角” 和6n 时 f r的图象的直观来帮助我们研究二项式系数的性质 对称性

5、:与首末两端“等距离”的两个二项式系数相等 【学而思高中数学讲义】 事实上,这一性质可直接由公式 mn m nn CC 得到 增减性与最大值 如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大 由于展开式各项的二项式系数顺次是 012 1 1, 11 2 nnn n nn CCC , 3 12 1 2 3 n n nn C , 1 12 .2 1 2 3 .1 k n n nnnk C k , 12 .21 1 2 3.1 k n n nnnknk C kk , 1 n n C 其中,后一个二项式系数的分子是前一个二项式系数的分子乘

6、以逐次减小 1 的数(如 ,1,2, .n nn),分母是乘以逐次增大的数(如 1,2,3,)因为,一个自然数乘以 一个大于 1 的数则变大,而乘以一个小于 1 的数则变小,从而当k依次取 1,2,3,等值 时, r n C的值转化为不递增而递减了又因为与首末两端“等距离”的两项的式系数相等, 所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间 当n是偶数时,1n 是奇数,展开式共有1n 项,所以展开式有中间一项,并且这一项的 二项式系数最大,最大为 2 n n C 当n是奇数时,1n 是偶数,展开式共有1n 项,所以有中间两项 这两项的二项式系数相等并且最大,最大为 11

7、22 nn nn CC 二项式系数的和为2n,即 012 .2 rnn nnnnn CCCCC 奇数项的二项式系数的和等于偶数项的二项式系数的和,即 0241351 .2n nnnnnn CCCCCC 常见题型有: 求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题 典例分析 二项展开式 2 求展开式中的特定项(常数项,有理项,系数最大项等 ) 常数项 【学而思高中数学讲义】 【例 1】 在 20 4 3xy展开式中,系数为有理数的项共有项 【例 2】 1003 ( 23)的展开式中共有_项是有理项 【例 3】 6103 4 1 (1) (1)x x 展开式中的常数

8、项为_(用数字作答) 【例 4】 6 2 1 1xxx x 的展开式中的常数项为_ 【例 5】 二项式 4 2 x+ x 的展开式中的常数项为_,展开式中各项系数和 为 (用数字作答) 【例 6】 若 12 3 a x x 的展开式中的常数项为220,则实数a _ 【学而思高中数学讲义】 【例 7】 在二项式 5 2 a x x 的展开式中,x的系数是10,则实数a的值为 【例 8】 在 6 2 1 x x 的展开式中,常数项是_ (结果用数值表示) 【例 9】 如果 1 n x x 展开式中,第四项与第六项的系数相等,则n ,展开式中 的常数项的值等于 【例 10】 28 1 (12)()x

9、x x 的展开式中常数项为(用数字作答) 【例 11】若 1 ()nx x 展开式的二项式系数之和为 64,则展开式的常数项为 _(用数字作答) 【学而思高中数学讲义】 【例 12】若 3 1 (2)nx x 的展开式中含有常数项,则最小的正整数n等 于 【例 13】在 2 ()nx x 的 二项 展 开 式中 , 若 常数 项 为60, 则n等 于 (用数字作答) 【例 14】 2 1 ()nx x 的展开式中,常数项为 15,则n 【例 15】已知 2 3 1 (1)()nxxx x 的展开式中没有常数项,n * N,且 28n,则n _ 【例 16】 12 3 1 ()x x 展开式中的

10、常数项为_(用数字作答) 【学而思高中数学讲义】 【例 17】已知 2 ()n i x x 的展开式中第三项与第五项的系数之比为 3 14 , 其 中 2 1i ,则展开式中常数项是(用数字作答) 【例 18】已知10()nnN,若 n x x) 1 ( 2 3 的展开式中含有常数项,则这 样的n有() A3 个B2C1D0 【例 19】 6103 4 1 (1) (1)x x 展开式中的常数项为_(用数字作答) 【例 20】 5 1 (2) 2 x x 的展开式中整理后的常数项为(用数字作 答) 【例 21】 28 1 (12)()xx x 的展开式中常数项为(用数字作答) 【学而思高中数学

11、讲义】 【例 22】已知 3 1 2 n x x 的展开式的常数项是第7项, 则n的值为 () A7B8C9D10 【例 23】在 2 ()nx x 的 二项 展 开 式中 , 若 常数 项 为60, 则n等 于 (用数字作答) 【例 24】 2 1 ()nx x 的展开式中,常数项为 15,则n 【例 25】 12 3 1 ()x x 展开式中的常数项为_(用数字作答) 【学而思高中数学讲义】 【例 26】已知 2 ()n i x x 的展开式中第三项与第五项的系数之比为 3 14 , 其 中 2 1i ,则展开式中常数项是(用数字作答) 【例 27】已知10()nnN,若 n x x) 1

12、 ( 2 3 的展开式中含有常数项,则这 样的n有() A3 个B2C1D0 【例 28】 12 3 1 x x 展开式中的常数项为() A1320B1320 C220D220 【例 29】求 6 1 2x x 展开式中的常数项 【例 30】 6 1 2 2 x x 的展开式的常数项是(用数字作答) 【学而思高中数学讲义】 【例 31】在 2 n x x 的二项展开式中,若常数项为60,则n等于() 36912 【例 32】 1 n x x 的展开式中的第5项为常数项,那么正整数n的值 是 【例 33】若 n x x 3 1 的展开式中存在常数项,则n的值可以是 () A10B11C12D14

13、 【例 34】在 26 1 (2)x x 的展开式中常数项是,中间项是_ 【例 35】已知 2 3 1 (1)()nxxx x 的展开式中没有常数项,n * N,且 28n,则n _ 【例 36】若 3 1 (2)nx x 的展开式中含有常数项,则最小的正整数n等 【学而思高中数学讲义】 于 【例 37】已知 2 1 n x x 的展开式中第三项与第五项的系数之比为 3 14 , 则展开式中常数项是() A1B1C45D45 【例 38】若 2 1 n x x 展开式中的二项式系数和为512,则n等于 _;该展开式中的常数项为_ 【例 39】若 9 2 1 ax x 的展开式中常数项为84,则

14、a _,其展开式 中二项式系数之和为_ 【学而思高中数学讲义】 【例 40】若 1 n x x 展开式的二项式系数之和为 64,则展开式的常数项 为() A10B20C30D120 有理项 【例 41】求二项式 15 3 2 x x 的展开式中: 常数项; 有几个有理项(只需求出个数即可) ; 有几个整式项(只需求出个数即可) 【例 42】 1003 ( 23)的展开式中共有_项是有理项 【例 43】二项式 153 2 ()x x 的展开式中: 求常数项; 有几个有理项; 有几个整式项 【学而思高中数学讲义】 【例 44】已知在 4 1 2 n x x 的展开式中,前三项的系数成等差数列 求n

15、; 求展开式中的有理项 【例 45】二项展开式 15 3 1 x x 中,有理项的项数是() A3B4C5D6 【例 46】在 11 3 32xx 的展开式中任取一项,设所取项为有理项的概 率为p,则 1 0 p x dx A1B 6 7 C 7 6 D 11 13 【例 47】 123 ()xx的展开式中,含x的正整数次幂的项共有() A4项B3项C2项D1项 【学而思高中数学讲义】 【例 48】若 5 122ab(a,b为有理数) ,则ab() A45B55C70D80 系数最大的项 【例 49】已知 1 () 2 n x x 的展开式中前三项的系数成等差数列 求n的值; 求展开式中系数最

16、大的项 【例 50】 20 (23 ) x展开式中系数最大的项是第几项? 【例 51】已知(13 )nx的展开式中,末三项的二项式系数的和等于121, 求展开式中系数最大的项 【例 52】在 1 3 2 n x x 的展开式中,只有第 5 项的二项式系数最大,则展 开式中常数项是_ A7B7C28D28 【学而思高中数学讲义】 【例 53】已知 lg8 (2) x xx的展开式中,二项式系数最大的项的值等于 1120,求x 【例 54】求 10 3 1 2 x x 的展开式中,系数绝对值最大的项以及系数最 大的项 【例 55】已知 32 4 1 n x x 展开式中的倒数第三项的系数为45,求

17、: 含 3 x的项; 系数最大的项 【例 56】设m n N,1m n, ,( )(1)(1) mn f xxx的展开式中,x 的系数为19 求( )f x展开式中 2 x的系数的最大、最小值; 对于使( )f x中 2 x的系数取最小值时的m、n的值,求 7 x的系数 【学而思高中数学讲义】 【例 57】已知: 2 2 3 (3)nxx的展开式中, 各项系数和比它的二项式系数和 大992 求展开式中二项式系数最大的项;求展开式中系数最大的项 【例 58】 20 (23 ) x展开式中系数最大的项是第几项? 【例 59】关于二项式 2005 (1)x 有下列命题: 该二项展开式中非常数项的系数

18、和是1: 该二项展开式中第六项为 61999 2005 Cx; 该二项展开式中系数最大的项是第1003项与第1004项; 当2006x 时, 2005 (1)x 除以2006的余数是2005 其中正确命题的序号是_ (注:把你认为正确的命题序号都填上) 【例 60】在 3 1 2 n x x +的展开式,只有第5项的二项式系数最大,则展开式 中常数项为 (用数字作答) 【学而思高中数学讲义】 【例 61】设 21 * 174 n n N的整数部分和小数部分分别为 n M与 n m, 则 nnn mMm的值为 【例 62】 12 () mn axbx中,a b,为正实数,且200mnmn,它的展 开式中系数最大的项是常数项,求 a b 的取值范围 【例 63】二项式(1sin )nx的展开式中,末尾两项的系数之和为7,且二 项式系数最大的一项的值为 5 2 ,则x在(0, 2)内的值为_ 【例 64】如果 2 3 2 (3)nx x 的展开式中含有非零常数项, 则正整数n的最小 值为_(用数字作答) 【学而思高中数学讲义】 【例 65】在二项式1 n x的展开式中, 存在着系数之比为5 7的相邻两项, 则指数*n nN的最小值为

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|