ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:249.36KB ,
文档编号:1708259      下载积分:3.45 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-1708259.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(§2.3 第3课时 一元二次不等式的应用.docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

§2.3 第3课时 一元二次不等式的应用.docx

1、第第 3 课时课时一元二次不等式的应用一元二次不等式的应用 学习目标1.熟练掌握分式不等式的解法.2.理解一元二次方程、二次函数、二次不等式之间 的关系.3.构建一元二次函数模型,解决实际问题 一、解简单的分式不等式 问题 x3 x20 与(x3)(x2)0 等价吗? x3 x20 与(x3)(x2)0 等价吗? 提示 x3 x20 与(x3)(x2)0 等价; x3 x20 与(x3)(x2)0 不等价, 前者的解集中没有 2,后者的解集中有2. 例 1解下列不等式: (1) x1 2x11. 解(1)原不等式可化为(x1)(2x1)0, 1x1 2, 故原不等式的解集为 x|1x 1 2.

2、 (2)原不等式可化为 x1 3x50, x13x50, 3x50, 5 3x1, x5 3, 即5 3x1. 故原不等式的解集为 x| 5 30, x1x2 x2 0, 3 x20, 则 x2. 故原不等式的解集为x|x2 反思感悟分式不等式的解法 (1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元二次不等式组求解,但 要注意等价变形,保证分母不为零 (2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为 不等号右边为零,然后再用上述方法求解 跟踪训练 1解下列不等式: (1)x1 x30;(2) 5x1 x1 3.即知原不等式的解集为x|x1

3、或 x3 (2)不等式5x1 x1 3 可改写为5x1 x1 30, 即2x1 x1 0. 可将这个不等式转化成 2(x1)(x1)0, 解得1x1. 所以,原不等式的解集为x|1x0的解集为x|2x3, 求关于x的不等式cx2bxa0 的解集为x|2x3可知 a0,且 2 和 3 是方程 ax2bxc0 的 两根, 由根与系数的关系可知b a5, c a6. 故b c 5 6, 又由 a0 知 c0,故不等式 cx2bxa0,即 x 25 6x 1 60, 解得 x 1 2, 所以不等式 cx2bxa0 的解集为 x|x 1 2. 延伸探究 1若本例中条件不变,求关于 x 的不等式 cx2b

4、xa0 的解集 解由根与系数的关系知b a5, c a6 且 a0. c0, 即 x2b cx a c0,即 x 25 6x 1 60. 解得1 2x 1 3, 故原不等式的解集为 x| 1 2x0 的解集为x|2x3”变为“关于 x 的 不等式 ax2bxc0 的解集是 x| 1 3x2”求不等式 cx2bxa0 的解集 解方法一由 ax2bxc0 的解集为 x| 1 3x2知 a0. 又 1 3 2c a0. 又1 3,2 为方程 ax 2bxc0 的两个根, b a 5 3, b a 5 3. 又c a 2 3,b 5 3a,c 2 3a, 不等式 cx2bxa0 变为 2 3ax2 5

5、 3axa0. 又a0,2x25x30, 故所求不等式的解集为 x|3x 1 2. 方法二由已知得 a0, 设方程 cx2bxa0 的两根分别为 x1,x2, 则 x1x2b c,x 1x2a c, 其中a c 1 1 3 2 3 2, b c b a c a 1 3 2 1 3 2 5 2, x13,x21 2. 不等式 cx2bxa0)的解集为 x|3x0)的解集,求解其他不等式的解 集时,一般遵循 (1)根据解集来判断二次项系数的符号 (2)根据根与系数的关系把 b,c 用 a 表示出来并代入所要解的不等式 (3)约去 a,将不等式化为具体的一元二次不等式求解 跟踪训练 2已知关于 x

6、的不等式 x2axb0 的解集为x|1x0 的解集 解x2axb0 的解集为x|1x0. 解得 x1. bx2ax10 的解集为 x|x1. 三、一元二次不等式的实际应用 例 3(教材 P54 页例 5 改编)某种牌号的汽车在水泥路面上的刹车距离(刹车距离是指汽车刹 车后由于惯性往前滑行的距离)s m 和汽车刹车前的车速 x km/h 有如下关系:s2x 1 18x 2. 在一次交通事故中,测得这种车的刹车距离不小于 22.5 m,那么这辆汽车刹车前的车速至少 为多少? 解由题意可得 s2x 1 18x 222.5, 化简得 x236x4050,解得 x45 或 x9, 又x0,x45. 这辆

7、汽车刹车前的速度至少为 45 km/h. 反思感悟解不等式应用题的步骤 跟踪训练 3某施工单位在对一个长 800 m,宽 600 m 的草坪进行绿化时,是这样想的:中 间为矩形绿草坪,四周是等宽的花坛,如图所示,若要保证绿草坪的面积不小于总面积的二 分之一,试确定花坛宽度的取值范围 解设花坛的宽度为 x m,则草坪的长为(8002x) m,宽为(6002x) m. 根据题意得(8002x)(6002x)1 2800600, 整理得 x2700 x60 0000, 解得 x600(舍去)或 x100, 由题意知 x0,所以 0 x100, 所以当 x 在 0 x100 之间取值时,绿草坪的面积不

8、小于总面积的二分之一 1知识清单: (1)简单的分式不等式的解法 (2)二次函数与一元二次方程、不等式间的关系及应用 (3)一元二次不等式的实际应用 2方法归纳:转化、恒等变形 3常见误区: (1)解分式不等式要等价变形 (2)利用一元二次不等式解决实际问题时,应注意实际意义 1不等式x1 x21Bx|x2 Cx|2x1Dx|x1 答案C 2不等式1x 1x0 的解集为( ) Ax|1x1Bx|1x1 Cx|1x1Dx|1x1 答案B 解析原不等式 x1x10, x10, 1x0 的解集为x|2x0 的解集为() A. x| 1 2x1B. x|x1 C. x|1x 1 2D. x|x 1 2

9、 答案D 解析因为不等式 ax2bxc0 的解集为x|2x1, 所以 a0 可化为2ax2axa0, 因为 a0,分解因式得(2x1)(x1)0, 解得 x1 2或 x1. 4某商品在最近 30 天内的价格 y1与时间 t(单位:天)的关系式是 y1t10(0t30,tN); 销售量 y2与时间 t 的关系式是 y2t35(0t30,tN),则使这种商品日销售金额 z 不小 于 500 元的 t 的取值范围为_ 答案t|10t15,tN 解析z(t10)(t35), 依题意有(t10)(t35)500, 解得 10t15,tN,所以解集为t|10t15,tN 课时对点练课时对点练 1若 p:x

10、5 2x0,q:x 27x100,则 p 是 q 的( ) A充分不必要条件B必要不充分条件 C充要条件D既不充分也不必要条件 答案B 2不等式x2 x10 的解集是( ) Ax|x1 或1x2 Bx|1x2 Cx|x1 或 x2 Dx|1x2 答案D 解析此不等式等价于 x2x10, x10, 1x2. 3不等式3x1 2x 1 的解集是() A. x| 3 4x2B. x| 3 4x2 或 x 3 4D. x|x 3 4 答案B 解析不等式3x1 2x 1,移项得3x1 2x 10, 即 x3 4 x2 0,可化为 x3 4 x20, x20, 解得3 4x2,则原不等式的解集为 x| 3

11、 4x0 的解集为x|x1,则关于 x 的不等式axb x2 0 的解集为() Ax|x1 或 x2Bx|1x2 或 x1Dx|1x0 的解集为x|x1,a0, 故axb x2 ax1 x2 0,等价为(x1)(x2)0. x2 或 x0 的解集是x|1x2,则下列选项正确的是() Ab0 Babc0 Cabc0 D不等式 ax2bxc0 的解集是x|2x1 答案ABD 解析对于 A,a0,1,2 是方程 ax2bxc0 的两个根,所以121b a,12 c a, 所以 ba,c2a,所以 b0,所以 A 正确; 对于 B,令 yax2bxc,由题意可知当 x1 时不等式成立,abc0,所以

12、B 正确; 对于 C,当 x1 时 ax2bxc0,abc0,所以 C 错误; 对于 D,由题得 ax2ax2a0,因为 a0,所以 x2x20,所以2x0 的解集是x|2x0 的解集为x|x4,则实数 a_. 答案4 解析由题意知,不等式的解集为x|x4, 故(xa)(x1)0(x1)(x4)0,故 a4. 8已知关于 x 的不等式 ax2bxc0 的解集是 x|x 1 2,则 ax2bxc0 的解 集为_ 答案x| 1 2x2 解析由题意知,2,1 2是方程 ax 2bxc0 的两个根,且 a0,即为 2x25x20, 解得1 2x0 的解集为 x| 1 2x0 的解集为 x| 1 3x

13、1 2. (1)求 a,c 的值; (2)解关于 x 的不等式 ax2(ac2)x2c0. 解(1)由题意知,不等式对应的方程 ax25xc0 的两个实数根为1 3和 1 2, 由根与系数的关系,得 5 a 1 3 1 2, c a 1 2 1 3, 解得 a6,c1. (2)由 a6,c1 知不等式 ax2(ac2)x2c0 可化为6x28x20, 即 3x24x10,解得1 3x1, 所以不等式的解集为 x| 1 3x1. 10某汽车厂上年度生产汽车的投入成本为 10 万元/辆,出厂价为 12 万元/辆,年销售量为 10 000 辆本年度为适应市场需求,计划提高产品质量,适度增加投入成本若

14、每辆车投入 成本增加的比例为 x(0 x1),则出厂价相应地提高比例为 0.75x,同时预计年销售量增加的比 例为 0.6x,已知年利润(出厂价投入成本)年销售量 (1)写出本年度预计的年利润 y 与投入成本增加的比例 x 的关系式; (2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例 x 应在什么范围内? 解(1)由题意得 y12(10.75x)10(1x)10 000(10.6x)(0 x1), 整理得 y6 000 x22 000 x20 000(0 x0, 0 x0, 0 x1, 解得 0 x1 3, 所以投入成本增加的比例 x 应在 0 x1 3的范围内 11关于 x 的

15、不等式xm x1 0 的解集为 M,若 0M,则实数 m 的取值范围是() Am0 Cm0D不确定 答案B 12若 a0,b0,则不等式b1 xa 的解集为( ) A. x|x 1 a B. x| 1 ax 1 b C. x|x 1 b D. x| 1 bx0 或 0 xb, 1 x0, ax1 x 0, 可得 x0, x1 a, 故不等式的解集为 x|x 1 a. 13某小型服装厂生产一种风衣,日销售量 x(件)与单价 P (元)之间的关系为 P1602x,生 产 x 件所需成本为 C(元),其中 C(50030 x)元,若要求每天获利不少于 1 300 元,则日销 售量 x 的取值范围是(

16、) Ax|20 x30,xN*Bx|20 x45,xN* Cx|15x30,xN*Dx|15x45,xN* 答案B 解析设该厂每天获得的利润为 y 元, 则 y(1602x)x(50030 x)2x2130 x500,0 x0 的解集是 x| 1 2x0;b0;c0;abc0;abc0. 其中正确结论的序号是_ 答案 解析由 ax2bxc0 的解集为 x| 1 2x2, 知 a0,c a 1 2210. 又b a 1 220,b0. 1 x| 1 2x2, abc0, 又 1 x| 1 2x0,故正确 15在一个限速 40 km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,

17、但还是相碰了 事发后现场测得甲车的刹车距离略超过 12 m, 乙车的刹车距离略超过 10 m 又 知甲、乙两种车型的刹车距离 s m 与车速 x km/h 之间分别有如下关系:s甲0.1x0.01x2,s 乙0.05x0.005x2.则这次事故的主要责任方为_ 答案乙车 解析由题意列出不等式 s甲0.1x0.01x212, s乙0.05x0.005x210. 分别求解,得 x甲30, x乙40. 由于 x0,从而得 x甲30 km/h,x乙40 km/h. 经比较知乙车超过限速,应负主要责任 16某热带风暴中心 B 位于海港城市 A 南偏东 60的方向,与 A 市相距 400 km.该热带风暴

18、 中心 B 以 40 km/h 的速度向正北方向移动,影响范围的半径是 350 km.问:从此时起,经多少 时间后 A 市将受热带风暴影响,大约受影响多长时间? 解如图,以 A 市为原点,正东方向为 x 轴建立直角坐标系 AB400,BAx30, 台风中心 B 的坐标为(200 3,200),x h 后台风中心 B 到达点 P(200 3,40 x200)处 由已知,A 市受台风影响时,有 AP350, 即(200 3)2(40 x200)23502, 整理得 16x2160 x3750, 解这个不等式得,3.75x6.25, A 市受台风影响的时间为 6.253.752.5(h) 故在 3.75 h 后,A 市会受到台风的影响,时间长达 2.5 h.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|