ImageVerifierCode 换一换
格式:PPT , 页数:20 ,大小:815KB ,
文档编号:2046945      下载积分:14 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2046945.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学课件:1.4 函数极限的性质与运算法则.ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学课件:1.4 函数极限的性质与运算法则.ppt

1、 第一章 二、二、 极限的四则运算法则极限的四则运算法则 三、三、 复合函数的极限运算法则复合函数的极限运算法则 一一 、函数极限的性质、函数极限的性质 第四节机动 目录 上页 下页 返回 结束 函数极限性质与运算法则1.函数极限的唯一性机动 目录 上页 下页 返回 结束 .)(lim()(lim0存在,则极限唯一如:若xfxfxx2. 局部有界性,)(lim0Axfxx若.),()(0内有界在xUxf),(0 xU则定理定理1 . 一一 、函数极限的性质、函数极限的性质 3. 局部保号性定理定理3.1 若,)(lim0Axfxx且 A 0 ,),(0时使当xx. 0)(xf)0)(xf证证:

2、 已知,)(lim0Axfxx即,0, ),(0 x当时, 有.)(AxfA当 A 0 时, 取正数,A则在对应的邻域上. 0)(xf( 0)(A则存在( A 0 ),(0 x),(0 xx),(0 x0 x0 xAAAx0 xy)(xfy )0(机动 目录 上页 下页 返回 结束 AxfA)(:0A:0A若取,2A则在对应的邻域上 若,0)(lim0Axfxx则存在使当时, 有.2)(Axf推论推论:23)(2AxfA2)(23AxfA),(0 x, ),(0 x),(0 xx0 x0 xAAAx0 xy)(xfy 分析分析:机动 目录 上页 下页 返回 结束 定理定理 3.2 若在0 x的

3、某去心邻域内0)(xf)0)(xf, 且 ,)(lim0Axfxx则. 0A)0(A证证: 用反证法.则由定理3. 1,0 x的某去心邻域 , 使在该邻域内,0)(xf与已知所以假设不真, .0A(同样可证0)(xf的情形)思考: 若定理3. 2 中的条件改为, 0)(xf是否必有?0A不能不能! 0lim20 xx存在如 假设 A 0 , 条件矛盾,故时,当0)(xf机动 目录 上页 下页 返回 结束 二、二、 极限的四则运算法则极限的四则运算法则,)(lim,)(limBxgAxf则有)()(limxgxf)(lim)(limxgxfBA定理定理 4 . 若机动 目录 上页 下页 返回 结

4、束 推论推论: 若,)(lim,)(limBxgAxf且),()(xgxf.BA)()()(xgxfx利用保号性定理证明 .说明说明: 定理 4 可推广到有限个函数相加、减的情形 .提示提示: 令定理定理 5. 若,)(lim,)(limBxgAxf则有)()(limxgxf)(lim)(limxgxf说明说明: 定理 5 可推广到有限个函数相乘的情形 .推论推论 1 .)(lim)(limxfCxfC( C 为常数 )推论推论 2 .nnxfxf )(lim)(lim( n 为正整数 )例例1. 设 n 次多项式,)(10nnnxaxaaxP试证).()(lim00 xPxPnnxx证证:)

5、(lim0 xPnxx0axaxx0lim1nxxnxa0lim)(0 xPnBA机动 目录 上页 下页 返回 结束 定理定理 6. 若,)(lim,)(limBxgAxf且 B0 , 则有)()(limxgxf)(lim)(limxgxfBA机动 目录 上页 下页 返回 结束 x = 3 时分母为 0 !31lim3xxx例例2. 设有分式函数,)()()(xQxPxR其中)(, )(xQxP都是多项式 ,0)(0 xQ试证: . )()(lim00 xRxRxx证证: )(lim0 xRxx)(lim)(lim00 xQxPxxxx)()(00 xQxP)(0 xR说明说明: 若,0)(0

6、 xQ不能直接用商的运算法则 .例例3.934lim223xxxx)3)(3() 1)(3(lim3xxxxx6231 若机动 目录 上页 下页 返回 结束 例例4. 求.125934lim22xxxxx解解: x时,分子.22111125934limxxxxx分子分母同除以,2x则54分母原式机动 目录 上页 下页 返回 结束 一般有如下结果:一般有如下结果:为非负常数 )nmba,0(00mn 当mmmxaxaxa110limnnnbxbxb110,00ba,0,机动 目录 上页 下页 返回 结束 mn 当mn 当三、三、 复合函数的极限运算法则复合函数的极限运算法则定理定理7. 设,)(

7、lim0axxx且 x 满足100 xx时,)(ax 又,)(limAufau则有 )(lim0 xfxxAufau)(lim证证: Aufau)(lim,0,0当au0时, 有 Auf)(axxx)(lim0,0,02当200 xx时, 有ax)(对上述取,min21则当00 xx时ax )(au 故0Axf)(Auf)(,因此式成立.机动 目录 上页 下页 返回 结束 定理定理7. 设,)(lim0axxx且 x 满足100 xx时,)(ax 又,)(limAufau则有 )(lim0 xfxxAufau)(lim 说明说明: 若定理中若定理中,)(lim0 xxx则类似可得 )(lim0

8、 xfxxAufu)(lim机动 目录 上页 下页 返回 结束 例例5. 求求解解: 令.93lim23xxx932xxu已知ux3lim61 原式 =uu61lim6166机动 目录 上页 下页 返回 结束 例例6 . 求求解解: 方法方法 1.11lim1xxx,xu 则, 1lim1ux令11112uuxx1 u 原式) 1(lim1uu2方法方法 211lim1xxx1) 1)(1(lim1xxxx) 1(lim1xx2机动 目录 上页 下页 返回 结束 内容小结内容小结1. 极限运算法则(1) 极限四则运算法则(2) 复合函数极限运算法则注意使用条件2. 求函数极限的方法(1) 分式

9、函数极限求法0) 1xx 时, 用代入法( 分母不为 0 )0)2xx 时, 对00型 , 约去公因子x)3时 , 分子分母同除最高次幂(2) 复合函数极限求法设中间变量机动 目录 上页 下页 返回 结束 思考及练习思考及练习1.,)(lim,)(lim不存在存在若xgxf)()(limxgxf是否存在 ? 为什么 ?答答: 不存在 . 否则由)()()()(xfxgxfxg利用极限四则运算法则可知)(limxg存在 , 与已知条件矛盾.问机动 目录 上页 下页 返回 结束 2. 求. )1(lim2xxxx解法解法 1 原式 =xxxx1lim21111lim2xx21解法解法 2 令,1x

10、t tttt1111lim2021则原式 =22011limttt111lim20tt 0t机动 目录 上页 下页 返回 结束 3. 试确定常数 a 使.0)1(lim33xaxx解解 : 令,1xt 则tatt33011lim001atatt3301lim01lim330att故1a机动 目录 上页 下页 返回 结束 因此备用题备用题 设)(xf解解:利用前一极限式可令bxaxxxf2322)(再利用后一极限式 , 得xxfx)(lim30可见0,3ba是多项式 , 且,22)(lim23xxxfx,3)(lim0 xxfx求. )(xf)(lim0 xbax故xxxxf322)(23机动 目录 上页 下页 返回 结束

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|