ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:689KB ,
文档编号:2057827      下载积分:9.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2057827.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学课件:D1习题课(第一章).ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学课件:D1习题课(第一章).ppt

1、二、二、 连续与间断连续与间断 一、一、 函数函数 三、三、 极限极限 习题课习题课机动 目录 上页 下页 返回 结束 函数与极限函数与极限 第一章 )(xfy yxoD一、一、 函数函数1. 函数的概念定义定义:Df :R)(DfDxxfyyDf, )()( 定义域 值域图形图形:DxxfyyxC, )(),( 一般为曲线 )设,RD函数为特殊的映射:其中机动 目录 上页 下页 返回 结束 2. 函数的特性有界性 , 单调性 , 奇偶性 , 周期性3. 反函数)(:DfDf设函数为单射, 反函数为其逆映射DDff)(:14. 复合函数给定函数链)(:11DfDf1)(:DDgDg则复合函数为

2、 )(:DgfDgf5. 初等函数有限个常数及基本初等函数经有限次四则运算与复复合而成的一个表达式的函数.机动 目录 上页 下页 返回 结束 例例1. 设函数,1,1,13)(xxxxxf)(xff1)(,1)(3xfxf1)(, )(xfxf0 x0,49xx1) 13(3x10 x1,xx求.)(xff解解:,13 x机动 目录 上页 下页 返回 结束 xxxff1211)()(,2)()(1xfxfxx解解: 利用函数表示与变量字母的无关的特性 .,1xxt,11tx代入原方程得,)()(1211tttff,111uux,11ux代入上式得,)()() 1(2111uuuuuff1,0

3、xx设其中).(xf求令即即令即画线三式联立1111)(xxxxf即xxxxxff) 1(2111)()(例例2.机动 目录 上页 下页 返回 结束 思考与练习思考与练习1. 下列各组函数是否相同 ? 为什么? )arccos2cos()() 1 (xxf 1 , 1, 12)(2xxx与axaaxxxf,)()2(2)(21)(xaxax与0,0,0)()3(xxxxf)()(xffx 与相同相同相同相同相同相同机动 目录 上页 下页 返回 结束 2. 下列各种关系式表示的 y 是否为 x 的函数? 为什么?1sin1) 1 (xy, 0,cos,sinmax)2(2xxxy22,arcsi

4、n)3(xuuy不是不是40 x,cosx24 x,sin x是是不是不是提示提示: (2)y机动 目录 上页 下页 返回 结束 0,10,1)()4(33xxxxxf0, 10, 1)()2(xxxf1,41,2)()3(xxxf,2xxxyo4211, 11, 13xx1) 1(32xx,16xoxy110 x1xRx3. 下列函数是否为初等函数 ? 为什么 ?0,0,)() 1 (xxxxxf2xxy1以上各函数都是初等函数 .机动 目录 上页 下页 返回 结束 4. 设,0)(,1)(,)(2xxxfexfx且求)(x及其定义域 .5. 已知8,)5(8,3)(xxffxxxf, 求.

5、 )5(f6. 设,coscsc)sin1(sin22xxxxf求. )(xf由)(2xex1得,)1ln()(xx0,(x,e)(fx2xf)(x4. 解解:e)(x2机动 目录 上页 下页 返回 结束 f5. 已知8,)5(8,3)(xxffxxxf, 求. )5(f解解:)5(f) (f310)10(f)7(f f)12(f) (f312)9(f66. 设,coscsc)sin1(sin22xxxxf求. )(xf解解:1sin)(sin2sin1sin12xxfxx3)(sin2sin1xx3)(2xxf机动 目录 上页 下页 返回 结束 二、二、 连续与间断连续与间断1. 函数连续的

6、等价形式)()(lim00 xfxfxx)()(,000 xfxxfyxxx0lim0yx)()()(000 xfxfxf,0,0,0时当 xx有)()(0 xfxf2. 函数间断点第一类间断点第二类间断点可去间断点跳跃间断点无穷间断点振荡间断点机动 目录 上页 下页 返回 结束 有界定理 ; 最值定理 ; 零点定理 ; 介值定理 .3. 闭区间上连续函数的性质例例3. 设函数)(xf,2)cos1 (xxa0 x,10 x, )(ln2xb0 x在 x = 0 连续 , 则 a = , b = .提示提示:20)cos1 (lim)0(xxafx2a221cos1xx)(lnlim)0(20

7、 xbfxblnbaln122e机动 目录 上页 下页 返回 结束 ) 1)()(xaxbexfx有无穷间断点0 x及可去间断点, 1x解解:为无穷间断点,0 x) 1)(lim0 xaxbexx所以bexaxxx) 1)(lim0ba101,0ba为可去间断点 ,1x) 1(lim1xxbexx极限存在0)(lim1bexxeebxx1lim例例4. 设函数试确定常数 a 及 b .机动 目录 上页 下页 返回 结束 例例5. 设 f (x) 定义在区间),(上 ,有yx,)()()(yfxfyxf, 若 f (x) 在连续,0 x提示提示:)(lim0 xxfx)()(lim0 xfxfx

8、)0()(fxf)0( xf)(xf阅读与练习阅读与练习且对任意实数证明 f (x) 对一切 x 都连续 .P64 题2(2), 4; P73 题5机动 目录 上页 下页 返回 结束 证证:P73 题题5. 证明: 若 令,)(limAxfx则给定,0,0X当Xx 时, 有AxfA)(又, ,)(XXCxf根据有界性定理,01M, 使,)(1XXxMxf取1,maxMAAM则),(,)(xMxf)(xf在),(内连续,)(limxfx存在, 则)(xf必在),(内有界.)(xfXXA1Myox机动 目录 上页 下页 返回 结束 三、三、 极限极限1. 极限定义的等价形式 (以 为例 )0 xx

9、 Axfxx)(lim00)(lim0Axfxx(即 为无穷小)Axf)(, )(0 xxxnnn有Axfnn)(limnx,0 xAxfxf)()(00机动 目录 上页 下页 返回 结束 2. 极限存在准则及极限运算法则3. 无穷小无穷小的性质 ; 无穷小的比较 ;常用等价无穷小: 4. 两个重要极限 6. 判断极限不存在的方法 xsin;xxtan;xxcos1;221xxarctan;xxarcsin;x)1ln(x;x1xe;x1xa;lnax1)1 (x;x机动 目录 上页 下页 返回 结束 5. 求极限的基本方法 例例6. 求下列极限:)sin1(sinlim) 1 (xxxxxx

10、sin112lim)2(xxxxcot110lim)3(提示提示: xxsin1sin) 1 (21cos21sin2xxxx21cos)1(21sin2xxxx无穷小有界机动 目录 上页 下页 返回 结束 令1lim)2(x1 xt0limt) 1(sin)2(ttt0limttttsin)2( 0limtttt)2( 2xxsin12机动 目录 上页 下页 返回 结束 0lim)3(xxxxcot110limxxxxcot)121(e)1(ln12xxxx122e则有)()(1lim0 xvxxxu复习复习: 若,0)(lim0 xuxx,)(lim0 xvxxe)(1ln)(lim0 x

11、uxvxxe)()(lim0 xuxvxx)(lim12sincos0 xxxxx1机动 目录 上页 下页 返回 结束 331xy例例7. 确定常数 a , b , 使0)1(lim33bxaxx解解: 原式0)1(lim313xbxxax0)1(lim313xbxxa故,01a于是,1a而)1(lim33xxbx2333231)1 (1limxxxxx0 xy机动 目录 上页 下页 返回 结束 例例8. 当0 x时,32xx 是x的几阶无穷小?解解: 设其为x的k阶无穷小,则kxxxx320lim0 C因kxxxx320lim3320limkxxxx 330)1 (lim2321xxkx故6

12、1k机动 目录 上页 下页 返回 结束 阅读与练习阅读与练习1. 求的间断点, 并判别其类型.解解:) 1)(1(sin)1 ()(xxxxxxf) 1)(1(sin)1 (lim1xxxxxx1sin21 x = 1 为第一类可去间断点)(lim1xfx x = 1 为第二类无穷间断点, 1)(lim0 xfx, 1)(lim0 xfx x = 0 为第一类跳跃间断点机动 目录 上页 下页 返回 结束 2. 求.sin12lim410 xxeexxx解:xxeexxxsin12lim410 xxeeexxxxsin12lim43401xxeexxxsin12lim410 xxeexxxsin12lim4101原式 = 1 (2000考研)机动 目录 上页 下页 返回 结束 作业作业 P74 3 (1) , (4) ; 4 ; 7 ; 8 (2) , (3) , (6) ; 9; 10 ; 11 ; 12机动 目录 上页 下页 返回 结束 3. 求.)321 (lim1xxxx解解: 令xxxxf1)321 ()(xxx11)()(33231则)(xf3x133利用夹逼准则可知.3)(limxfx

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|