ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:713KB ,
文档编号:2057882      下载积分:9.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2057882.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(罗嗣辉)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学(同济大学)课件下第09习题课.ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学(同济大学)课件下第09习题课.ppt

1、习题课习题课一、一、 重积分计算的基本方法重积分计算的基本方法 二、重积分计算的基本技巧二、重积分计算的基本技巧 三、重积分的应用三、重积分的应用 机动 目录 上页 下页 返回 结束 第九章 重积分的 计算 及应用 一、重积分计算的基本方法一、重积分计算的基本方法1. 选择合适的坐标系使积分域多为坐标面(线)围成;被积函数用此坐标表示简洁或变量分离.2. 选择易计算的积分序积分域分块要少, 累次积分易算为妙 .图示法列不等式法(从内到外: 面、线、点)3. 掌握确定积分限的方法 累次积分法机动 目录 上页 下页 返回 结束 练习练习计算积分Ddyx,)(其中D 由,22xy 12,4yxyx所

2、围成. P124 2 (3) ; 6; 7 (1), (3)补充题:解答提示解答提示: (接下页接下页) 机动 目录 上页 下页 返回 结束 2 (3). 计算二重积分,d222DyxR其中D 为圆周xRyx22所围成的闭区域.提示提示: 利用极坐标cosRr 原式cos022dRrrRr2033d)sin1(32R)34(313RyDR xo:Dcos0Rr 2222d机动 目录 上页 下页 返回 结束 P1246. 把积分zyxzyxfddd),(化为三次积分,其中由曲面222,xyyxz0,1zy提示提示: 积分域为:原式220d),(yxzzyxf及平面220yxz12 yx11x12

3、dxy11dx所围成的闭区域 .xyz机动 目录 上页 下页 返回 结束 P124zD1zD27 (1) .计算积分2222RzyxzRzyx2222及,ddd2zyxz其中是两个球 ( R 0 )的公共部分.提示提示: 由于被积函数缺 x , y ,原式 =zDyx1ddzzzRzRd)2(2022利用“先二后一先二后一” 计算方便 .zzRd202zDyx2ddzzRRd22zzRzRRd)(2222548059RRzyxo2R机动 目录 上页 下页 返回 结束 P1247 (3).计算三重积分,d)(22vzy其中是由 xoy平面上曲线xy225x所围成的闭区域 .提示提示: 利用柱坐标

4、sincosrzryxx原式522drx绕 x 轴旋转而成的曲面与平面5221 xr100 r20rr d100320d3250:zxyo5机动 目录 上页 下页 返回 结束 P124补充题补充题. 计算积分Ddyx,)(其中D 由,22xy 12,4yxyx所围成 .提示提示: :如图所示xy224246oyx,12DDD 内有定义且在2),(DyxyxfDyxd)(2d)(Dyx1d)(Dyx连续,所以yyxyx1222d)(46dyyyxyx422d)(24dy15115431D2DD机动 目录 上页 下页 返回 结束 二、重积分计算的基本技巧二、重积分计算的基本技巧分块积分法利用对称性

5、1. 交换积分顺序的方法2. 利用对称性或重心公式简化计算3. 消去被积函数绝对值符号练习题练习题4. 利用重积分换元公式P123 1 (总习题九) ; P124 4, 7(2), 9解答提示解答提示: (接下页接下页)机动 目录 上页 下页 返回 结束 axamyxamaxxfexaxxfey0)(0)(0d)()(d)(d证明:提示提示: 左端积分区域如图,Doyxxy a交换积分顺序即可证得.P124 4.7(2).,d1) 1ln(222222vzyxzyxz求其中是1222zyx所围成的闭区域 .提示提示: 被积函数在对称域 上关于 z 为奇函数 , 利用 对称性可知原式为 0. 机

6、动 目录 上页 下页 返回 结束 由球面P124R9. 在均匀的半径为R的圆形薄片的直径上 , 要接上一个一边与直径等长的同样材料的均匀矩形薄片,使整个的另一边长度应为多少?22xRyboRyx提示提示: 建立坐标系如图.,0y由对称性知Dyxydd022ddxRbRRyyx2332bRR 由此解得Rb32问接上去的均匀矩形薄片即有D薄片的重心恰好落在圆心上 ,?b机动 目录 上页 下页 返回 结束 例例1. 计算二重积分,dd)(222yxeyxxIyxD其中:(1) D为圆域; 122 yx(2) D由直线1,1,xyxy解解: (1) 利用对称性.yox1DyxxIDdd20dd)(21

7、22yxyxD10320dd21rr4yxeyxDyxdd22围成 .机动 目录 上页 下页 返回 结束 yxeyxDyxdd122(2) 积分域如图:o1yx11D2Dxyxy , xy将D 分为,21DDyxxIDdd2yxeyxDyxdd22200dd1112xyxx32添加辅助线利用对称性 , 得机动 目录 上页 下页 返回 结束 例例2. 计算二重积分,dd)35(Dyxyx其中D 是由曲044222yxyx所围成的平面域 .解解:2223)2() 1(yx其形心坐标为:面积为:9ADyxxIdd5923) 1(5ADyxydd3积分区域线形心坐标2,1yxDyxxAxdd1Dyxy

8、Aydd1AyAx35机动 目录 上页 下页 返回 结束 111 xyo例例3. 计算二重积分,dd)sgn() 1 (2yxxyID,dd)22()2(22yxxyyxID122 yx在第一象限部分. 解解: (1)2xy 21, DD两部分, 则1ddDyxI1112ddxyx322D2ddDyx2011ddxyx1011:yxD,其中D 为圆域把与D 分成1D作辅助线机动 目录 上页 下页 返回 结束 xy1o1xy (2) 提示提示: 21, DD两部分 1DyxyxDdd)(22yxyxDdd)2(说明说明: 若不用对称性, 需分块积分以去掉绝对值符号. xy 作辅助线2D将D 分成

9、Dyxdd2yxxyyxIDdd)22(222) 12(32机动 目录 上页 下页 返回 结束 xysinxyo2例例4. 1d),(Dyxfyyxyxfarcsinarcsind),(10dyIxyyxfsin0d),(0d x0sind),(xyyxf2d xyyxyxfarcsin2arcsind),(01dy如图所示交换下列二次积分的顺序:xyyxfxIsin020d),(d1D2D2d),(Dyxf解解:机动 目录 上页 下页 返回 结束 例例5.,)0(, 0)0(,)(存在设ffCuf,求)(1lim40tFtt)(tF解解: 在球坐标系下trrrftF02020d)(dsind

10、)(trrrf02d)(440)(limttFt利用洛必达法则与导数定义,得3204)(4limtttftttft)(lim0)0(f0)0(Fzyxzyxftzyxddd)(2222222其中 0)0(f 机动 目录 上页 下页 返回 结束 三、重积分的应用三、重积分的应用1. 几何方面面积 ( 平面域或曲面域 ) , 体积 , 形心质量, 转动惯量, 质心, 引力 证明某些结论等 2. 物理方面3. 其它方面机动 目录 上页 下页 返回 结束 例例6.,上连续在设,)(baxf证明babaxxfabxxfd)()(d)(22证证: :左端yyfxxfbabad)(d)(yxyfxfDdd)

11、()(222baab利用yxyfxfDdd)()(222121xxfybabad)(d2yyfxbabad)(d22abxdxfba)(2xdxfabba)()(2byabxaD:= 右端ydyfba)(2机动 目录 上页 下页 返回 结束 ozyt)(tx)(tD例例7.设函数 f (x) 连续且恒大于零, )(22)(222d)(d)()(tDtyxfvzyxftFtttDxxfyxftGd)(d)()(2)(22其中,),()(2222tzyxzyxt.),()(222tyxyxtD(1) 讨论 F( t ) 在区间 ( 0, +) 内的单调性; (2) 证明 t 0 时, . )(2)

12、(tGtF(03考研)机动 目录 上页 下页 返回 结束 解解: (1) 因为 ttrrrfrrrftF0220022020d)(ddsin)(dd)(ttrrrfrrrf02022d)(d)(2两边对 t 求导, 得202022d)(d)()()(2)(ttrrrfrrtrrftfttF, 0)(), 0(tF上在.), 0()(单调增加上在故tF机动 目录 上页 下页 返回 结束 (2) 问题转化为证 0)(2)(,0tGtFt时ttrrfrrrftG020220d)(2d)(d)(ttrrfrrrf0202d)(d)(即证 0d)(d)(d)(20202022tttrrrfrrfrrrf

13、)(tg0d)()()(0222trrtrftftg,), 0()(单调增在故tg,0)(连续在又因ttg故有)0()0()(tgtg0因此 t 0 时, .0)(2)(tGtF因机动 目录 上页 下页 返回 结束 利用“先二后一”计算.zyxVdddzDcyxzddd20abc34czczab022d)1 (2222221:czbyaxDz机动 目录 上页 下页 返回 结束 例例8. 试计算椭球体1222222czbyax的体积 V.解法解法1*解法解法2利用三重积分换元法. 令cos,sinsin,cossinrczrbyrax则),(),(rzyxJ,sin2rcba:zyxVdddrJdddabcabc34rrabcdddsin2rr d1020dsin20d20010 r机动 目录 上页 下页 返回 结束 作业作业P98 *21, *22(1)P117 4 , 9 , 11P124 10 , 11机动 目录 上页 下页 返回 结束

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|