ImageVerifierCode 换一换
格式:PPT , 页数:41 ,大小:2.61MB ,
文档编号:211581      下载积分:1.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-211581.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(alice)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2.2.1椭圆及其标准方程(ppt自带动画-不需另外下载).ppt)为本站会员(alice)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2.2.1椭圆及其标准方程(ppt自带动画-不需另外下载).ppt

1、椭圆及其标准方程,相 框,直观感受,一.图片感知 认识椭圆,一.图片感知 认识椭圆,一.图片感知 认识椭圆,一.图片感知 认识椭圆,一.图片感知 认识椭圆,一.图片感知 认识椭圆,开普勒行星运动定律1-轨道定律:,所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,一.图片感知 认识椭圆,神州六号搭乘两名航天员从酒泉卫星发射中心发射升空,运行在轨道倾角42.4度,近地点高度200千米,远地点高度347千米的椭圆轨道上运行了5圈。,一.图片感知 认识椭圆,(1)取一条细绳, (2)把它的两端固定在板上的两点F1、F2 (3)用铅笔尖(M)把细绳拉紧,在板上慢慢移动看看画出的图形,

2、二.类比探究 形成概念,请同学们小组合作,完成下列图形,自然界处处存在着椭圆,我们如何用自己的双手画出椭圆呢?,1视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何? 2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3绳长能小于两图钉之间的距离吗? 4.请给椭圆下定义。,数 学 实 验,二.类比探究 形成概念,以小组为单位讨论以下问题,然后派代表展示本组结论,探究1:椭圆的定义,2. 改变两点之间的距离,使其与绳长相等,画出的图形还是椭圆吗?,3绳长能小于两点之间的距离吗?,二.类比探究 形成概念,感悟:(1)若|MF1|+|MF2|F1F2|,M点轨迹

3、为椭圆.,(3)若|MF1|+|MF2|F1F2|,M点轨迹不存在.,(2)若|MF1|+|MF2|=|F1F2|,M点轨迹为线段.,二.类比探究 形成概念,平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。,这两个定点叫做椭圆的焦点,,两焦点间的距离叫做椭圆的焦距(一般用2c表示)。,二.类比探究 形成概念,(2a|F1F2|=2c),1、定义中需要注意什么? 2、如何求椭圆的方程(标准方程) 请举手回答,(2a2c),椭圆定义的 符号表述:,椭圆定义的文字表述:,(1)必须在平面内;,(2)两个定点-两点间距离确定(2c);,(3)定长-轨迹上任意点到两定

4、点距离和(2a)确定.,(4)|MF1|+|MF2|F1F2|,二.类比探究 形成概念,(2a2c),一点要注意哦,1、定义中需要注意:,2、求椭圆的方程(标准方程),建立平面直角坐标系通常遵循的原则:“对称”、“简洁”,方案一,探究2:椭圆的方程,二.类比探究 形成概念, 小组探讨建立平面直角坐标系的方案并求出椭圆的标准方程,解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).,设M(x, y)是椭圆上任意一点,椭 圆的焦距2c(c0),M与F1和F2的距 离的和等于正常数2a (2a2c) ,则 F1、F2的坐标分别 是(c,0)、(c,0) .

5、,由椭圆的定义得:,代入坐标,(问题:下面怎样化简?),二.类比探究 形成概念,由椭圆定义可知,两边再平方,得,移项,再平方,二.类比探究 形成概念,它表示: 椭圆的焦点在x轴 焦点坐标为F1(-C,0)、F2(C,0) c2= a2 - b2,椭圆的标准方程,思考:当椭圆的焦点在y轴上时,它的标准方程是怎样的呢,二.类比探究 形成概念,椭圆的标准方程,它表示: 椭圆的焦点在y轴 焦点是F1(0,-c)、 F2(0,c) c2= a2 - b2,二.类比探究 形成概念,总体印象:对称、简洁,“像”直线方程的截距式,所谓椭圆的标准方程,一定是焦点在坐标轴上,且两焦点的中点为坐标原点。,思考:在图

6、形中,a,b,c分别代表哪段的长度?,二.类比探究 形成概念,分母哪个大,焦点就在哪个轴上,平面内到两个定点F1,F2的距离的和等 于常数(大于F1F2)的点的轨迹,椭圆标准方程的再认识:,二.类比探究 形成概念,练习1.用定义判断下列动点M的轨迹是否为椭圆。,(1)到F1(-2,0)、F2(2,0)的距离之和为6的点的轨迹。,(2)到F1(0,-2)、F2(0,2)的距离之和为4的点的轨迹。,(3)到F1(-2,0)、F2(0,2)的距离之和为3的点的轨迹。,解 (1)因|MF1|+|MF2|=6|F1F2|=4,故点M的轨迹为椭圆。,(2)因|MF1|+|MF2|=4=|F1F2|=4,故

7、点M的轨迹不是椭圆(是线段F1F2)。,三.夯实基础 灵活运用,认真思考,举手抢答,并说明依据。,答:在 X 轴。(-3,0)和(3,0),答:在 y 轴。(0,-5)和(0,5),答:在y 轴。(0,-1)和(0,1),例1:判定下列椭圆的标准方程在哪个轴上,并写出焦点坐标。,例题精析,判断椭圆标准方程的焦点在哪个轴上的准则: 焦点在分母大的那个轴上。,三.夯实基础 灵活运用,请举手回答,例2、填空:自由发言 已知椭圆的方程为: ,则a=_,b=_,c=_,焦点坐标为:_焦距等于_;若CD为过左焦点F1的弦,则F2CD的周长为_,5,4,3,(3,0)、(-3,0),6,20,1、已知椭圆的

8、方程为: ,则a=_,b=_,c=_,焦点坐标为:_焦距等于_;曲线上一点P到焦点F1的距离为3,则点P到另一个焦点F2的距离等于_,则F1PF2的周长为_,2,1,(0,-1)、(0,1),2,跟踪练习:自由发言,例3椭圆的两个焦点的坐标分别是(4,0),(4,0), 椭圆上一点M到两焦点距离之和等于10,求椭圆的标准方程。 迅速在练习本上写出过程,和答案对照,讲评例题,.,解: 椭圆的焦点在x轴上 设它的标准方程为: 2a=10, 2c=8 a=5, c=4 b2=a2c2=5242=9 所求椭圆的标准方程为,解题感悟:求椭圆标准方程的步骤:,定位:确定焦点所在的坐标轴;,定量:求a, b

9、的值.,例4:若方程4x2+kx2=1表示的曲线是焦点在y轴上的椭圆,求k的取值范围。,方程表示的曲线是焦点在y轴上的椭圆,解之得:0k4,k的取值范围为0k4。,快速思考,举手回答,1、方程 ,分别求方程满足下列条件 的m的取值范围: 表示一个圆;,探究与互动:,析:方程表示圆需要满足的条件:,快速思考,举手回答,1、方程 ,分别求方程满足下列条件 的m的取值范围: 表示一个圆; 表示一个椭圆;,探究与互动:,析:方程表示一个椭圆需要满足的条件:,快速思考,举手回答,1、方程 ,分别求方程满足下列条件 的m的取值范围: 表示一个圆; 表示一个椭圆; 表示焦点在x轴上的椭圆。,探究与互动:,析

10、:表示焦点在x轴上的椭圆需要满足的条件:,快速思考,举手回答,解题感悟: 方程表示椭圆时要看清楚限制条件,焦点在哪个轴上。,因为椭圆的焦点在y轴上,所以椭圆的标准方程为:,解:由椭圆的定义知:,例5 已知椭圆的两个焦点的坐标分别是 (0 ,-2) (0 ,2)并且经过点 求椭圆的标准方程,F2,法( )待定系数法,法(1)定义法,快速思考,说出你的答案,课本例2、将圆 上的点的横坐标保持不变,纵坐标变为原来的一半,求所得的曲线的方程,并说明它是什么曲线.,解:设所得曲线上任一点坐标为P(x,y),圆上的对应点的坐标P(x,y),由题意可得:,因为,所以,即,这就是变换后所得曲线的方程,它表示一个椭圆。,相关点分析法:即利用中间变量求曲线方程.,1、椭圆的定义(强调2a|F1F2|=2c)和椭圆的标准方程,2、椭圆的标准方程有两种,注意区分,4、求椭圆标准方程的方法,小结,3、根据椭圆标准方程判断焦点位置的方法,注:这样设不失为一种方法.,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|