ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:880KB ,
文档编号:2131298      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2131298.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高中数学(人教版)泰勒公式精ppt课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高中数学(人教版)泰勒公式精ppt课件.ppt

1、.第三讲 泰勒公式.泰勒公式泰勒公式一、泰勒公式二、几个初等函数的麦克劳林公式三、泰勒公式的应用.泰勒公式泰勒公式一、泰勒公式二、几个初等函数的麦克劳林公式三、泰勒公式的应用.研究问题研究问题)(xf多项式多项式余余 项项)(xpn)(xRn简单简单较复杂较复杂误差误差近似计算近似计算理论分析理论分析微分微分)()()()(0000 xxoxxxfxfxf )()(001xfxp )()(001xfxp )()(0)(0)(xfxpkkn 0,1,2,kn )(0nxxo ? ?一次多项式一次多项式p p1 1( (x x) )误误 差差探究问题探究问题.nnnxxaxxaxxaaxp)()(

2、)()(0202010 令令)(00 xpa 0 xx 10021)()(2)( nnnxxnaxxaaxp令令! 1)(01xpan 0 xx 220( )2(1)()nnnpxan naxx 令令! 2)(02xpan 0 xx nnnanxp!)()( 令令!)(0)(nxpannn 0 xx )(0 xf ! 1)(0 xf ! 2)(0 xf !)(0)(nxfn nnnxxnxfxxxfxxxfxfxp)(!)()(! 2)()(! 1)()()(00)(200000 p pn n( (x x) )的确定的确定. 余项余项R Rn n( (x x) )的确定的确定)()()(xpx

3、fxRnn )()()(0)(0)(0)(xfxpxRkknkn 0 ), 2 , 1 , 0(nk 00( )lim()nnxxRxxx 010( )lim()nnxxRxn xx 020( ) lim(1)()nnxxRxn nxx 多次使用洛必达法则多次使用洛必达法则0(1)0( ) lim!()nnxxRxnxx 00()()0nnR xR x 0()0nR x (1)0()0nnRx 0(1)(1)00( )() 1lim!nnnnxxRxRxnxx ( )01()!nnRxn 0 . 泰勒泰勒(Taylor)(Taylor)中值定理中值定理1 1如果函数如果函数)(xf在在0 x处

4、具有处具有n n阶导数阶导数, ,那么存在那么存在对于该邻域内的任一对于该邻域内的任一x x,有,有nnxxnxfxxxfxxxfxfxf)(!)()(!2)()(! 1)()()(00)(200000 )(xRn 其中其中 0( )().nnRxoxx函数函数f f ( (x x) )按按( (x x- -x x0 0) )的幂展开的的幂展开的n n次泰勒多项式次泰勒多项式佩亚诺佩亚诺余项余项函数函数f f ( (x x) )按按( (x x- -x x0 0) )的幂展开的的幂展开的带有带有佩亚诺佩亚诺余项的余项的n n阶阶泰勒公式泰勒公式0 x的一个邻域,的一个邻域,.研究问题研究问题)

5、(xf多项式多项式余余 项项)(xpn)(xRn简单简单较复杂较复杂误差误差近似计算近似计算理论分析理论分析微分微分)()()()(0000 xxoxxxfxfxf )()(001xfxp )()(001xfxp )()(0)(0)(xfxpkkn 0,1,2,kn )(0nxxo 定性定性定量定量拉格朗日中值定理拉格朗日中值定理)()()(00 xxfxfxf 表达式表达式? ? ?一次多项式一次多项式p p1 1( (x x) )误误 差差探究问题探究问题. 余项余项R Rn n( (x x) )的确定的确定)()()(xpxfxRnn )()()(0)(0)(0)(xfxpxRkknkn

6、 0 ), 2 , 1 , 0(nk 10)()( nnxxxR )( )(10 nnxxxR )( 2) 1( )(0)(xnRnnnn nnxnR)(1()(011 )(1( )(011nnxnR 1022)()1()( nnxnnR !)1()()1( nRnn )(0 xRn 0 )(0 xRn 0 )(0)(xRnn 0 1( 在在x x0 0与与x x 之间之间) )2( 在在x x0 0与与1 之间之间) ) (在在x x0 0与与n 之间之间) )!)1()()1( nfn x多次使用柯西中值定理多次使用柯西中值定理. 泰勒泰勒(Taylor)(Taylor)中值定理中值定理2

7、 2nnxxnxfxxxfxxxfxfxf)(!)()(!2)()(! 1)()()(00)(200000 )(xRn 其中其中,)()!1()()(10)1( nnnxxnfxR 这里这里 是是0 x与与x之间的某个值之间的某个值. .函数函数f f ( (x x) )按按( (x x- -x x0 0) )的幂展开的的幂展开的n n次泰勒多项式次泰勒多项式拉格朗日拉格朗日余项余项函数函数f f ( (x x) )按按( (x x- -x x0 0) )的幂展开的的幂展开的带有带有拉格朗日拉格朗日余项的余项的n n阶阶泰勒公式泰勒公式如果函数如果函数)(xf在在0 x的某个邻域的某个邻域0(

8、)U x内具有内具有) 1( n那么对任一那么对任一0(),xU x 有有阶导数阶导数, ,.10)1()()!1()()( nnnxxnfxR 0 n)()()(00 xxfxfxf 10)!1( nxxnM)(0nxxo 1 n)()()()(0000 xxoxxxfxfxf 00 xnnxnfxfxffxf!)0(!2)0(!1)0()0()()(2 函数的微分函数的微分拉格朗日中值公式拉格朗日中值公式 200000)(!2)()(! 1)()()(xxxfxxxfxfxf)()(!)(00)(xRxxnxfnnn Mxfn )()1()(bxa ) 10()!1()()1( nxfn)

9、(nxo佩亚诺佩亚诺(Peano)(Peano)型型余项余项麦克劳林麦克劳林(Maclaurin)(Maclaurin)公式公式.泰勒公式泰勒公式一、泰勒公式二、几个初等函数的麦克劳林公式三、泰勒公式的应用.泰勒公式泰勒公式一、泰勒公式二、几个初等函数的麦克劳林公式三、泰勒公式的应用.xexf )( 的麦克劳林公式的麦克劳林公式 ), 2 , 1 , 0()()( kexfxk), 2 , 1 , 0(1) 0 ()(nkfk xnexf )() 1() 10 (! ) 1(! 212 nenxxxexnxxxfsin)( 的麦克劳林公式的麦克劳林公式 )2sin()()( kxxfk 2si

10、n)0()( kfk01) 1( mmk2 12 mkmmmRmxxxxx212153)!12() 1(! 5! 3sin ) 10()!12(2) 12(sin122 mmxmmxR.xxfsin)( 的麦克劳林公式的麦克劳林公式 类似可得类似可得)()!2() 1(! 4! 21cos12242xRmxxxxmmm 2221cos(1)( )(01)(22)!mmxmRxxm ( )ln(1)f xx 的麦克劳林公式的麦克劳林公式 kkkxkxf)1 ()!1() 1()(1)( )!1() 1() 0 (1)( kfkk)() 1(32)1ln(132xRnxxxxxnnn ) 10()

11、1)(1() 1()(11 nnnnxxnxR. )1 ()(xxf 的麦克劳林公式的麦克劳林公式 kkxkxf )1)(1() 1()()() 1() 1() 0 ()( kfk ), 2 , 1( k 2! 2) 1(1)1 (xxx )(!) 1() 1(xRxnnnn ) 10()1 ()!1()(1() 1()(11 nnnxxnnnxR.泰勒公式泰勒公式一、泰勒公式二、几个初等函数的麦克劳林公式三、泰勒公式的应用.泰勒公式泰勒公式一、泰勒公式二、几个初等函数的麦克劳林公式三、泰勒公式的应用.三、泰勒公式的应用三、泰勒公式的应用(一) 近似计算(二) 求极限(三) 其它应用.三、泰勒

12、公式的应用三、泰勒公式的应用(一) 近似计算(二) 求极限(三) 其它应用. 原理原理 nnxnfxfxffxf!)0(!2)0(!1)0()0()()(2 )10()!1()(1)1( nnxnxfnnxnfxfxffxf!)0(!2)0(!1)0()0()()(2 若若)()()1(bxaMxfn 误差误差1)!1()( nnxnMxR在在),(ba内内, , 应用应用 1) 1) 已知已知x x 和误差限和误差限 , , 确定近似公式的项数确定近似公式的项数n n ; ;2) 2) 已知近似公式的项数已知近似公式的项数n n和和x x , , 计算近似值并估计误差计算近似值并估计误差;

13、;3) 3) 已知近似公式的项数已知近似公式的项数n n 和误差限和误差限 , , 确定公式中确定公式中x x 的适用范围的适用范围. .u例例1 1 计算无理数计算无理数e的近似值的近似值, ,使其误差不超过使其误差不超过.106 u例例2 2 (1)(1)xx sin在区间在区间)0(),( AAA上用近似公式上用近似公式)!12() 1(! 5! 3sin12153 mxxxxxmm计算计算,sin x当用下列各式计算时当用下列各式计算时, ,欲使误差欲使误差小于小于0.0010.001,A A可取多大?可取多大?(2)(2)! 3sin3xxx (3)(3)! 5! 3sin53xxx

14、x 42246420246!33xxyxy ! 5! 353xxxyxysin.三、泰勒公式的应用三、泰勒公式的应用(一) 近似计算(二) 求极限(三) 其它应用.三、泰勒公式的应用三、泰勒公式的应用(一) 近似计算(二) 求极限(三) 其它应用.u例例3 3 求下列极限求下列极限(1)(1)4202coslimxexxx (2)(2)xxxxx30sincossinlim l注注 高阶无穷小的性质高阶无穷小的性质)()()()(nmxoxoxommn )()(nnxocxo ( (c c为常数为常数) )()()(mnmnxoxoxo .三、泰勒公式的应用三、泰勒公式的应用(一) 近似计算(二) 求极限(三) 其它应用.三、泰勒公式的应用三、泰勒公式的应用(一) 近似计算(二) 求极限(三) 其它应用.u例例4 4 设函数设函数)(xf在在),( 上二阶可导上二阶可导, ,且且)(0)( xxf证明对于任意二数证明对于任意二数0 x及及),(0 xxx 恒有恒有: :)()()(000 xxxfxfxf u例例5 5 证明不等式证明不等式)0(82112 xxxx

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|