ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:277.32KB ,
文档编号:2596634      下载积分:5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2596634.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(选修二5.3.2 函数的极值与最大(小)值(1)教学设计.docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

选修二5.3.2 函数的极值与最大(小)值(1)教学设计.docx

1、5.3.2 函数的极值与最大(小)值 (1) 本节课选自2019人教A版高中数学选择性必修二第四章数列,本节课主要学习函数的极值与最大(小)值 学生已经具有导数概念、导数几何意义、导数计算、函数的单调性等相关的数学概念知识,对函数的单调性有一定的认识,对相应导数的内容也具有一定的储备。函数的极值与最值是函数的一个重要性质。在学习运用导数判断函数单调性的基础上,研究和学习函数的极值与最值是导数的一个重要应用,注意培养学生数形结合思想、特殊到一般的研究方法,发展学生直观想象、数学抽象、逻辑推理和数学运算核心素养。课程目标学科素养A.了解函数极值的概念,会从函数图象直观认识函数极值与导数的关系.B初

2、步掌握求函数极值的方法 C体会渗透在数学中的整体与局部的辩证关系1.数学抽象:求函数极值的方法 2.逻辑推理:导数值为零与函数极值的关系 3.数学运算:运用导数求函数极值 4.直观想象:导数与极值的关系重点:求函数极值 难点:函数极值与导数的关系 多媒体教学过程教学设计意图核心素养目标一、 温故知新1.函数f (x)的单调性与导函数f (x)正负的关系定义在区间(a,b)内的函数yf (x):f (x)的正负f (x)的单调性f (x)0单调递_f (x)0单调递_增 ;减 2判断函数yf (x)的单调性第1步:确定函数的_;第2步:求出导数f (x)的_;第3步:用f (x)的_将f (x)

3、的定义域划分为若干个区间,列表给出f (x)在各区间上的_,由此得出函数yf (x)在定义域内的单调性定义域 ;零点 ;零点 ;正负 二、探究新知探究1:观察下图,我们发现当t=a时,高台跳水运动员距水面的高度最大,那么函数h(t)在此点处的导数是多少?此点附件的函数图象有什么特点?相应地,导数的正负有什么变化规律? 放大t=a附近函数h(t)的图像,如图,可以看出,ha=0;在t=a的附近,当t0;当ta时,函数h(t)单调递减,ht0.这就是说,在t=a附近,函数值先增(当t0)后减(当ta时,ht0)这样,当t在a的附近从小到大经过a时,ht先正后负,且ht连续变化,于是有ha=0.对于

4、一般的函数y=f(x),是否具有同样的性质?以a,b为例进行说明.探究2:观察下图,函数y=f(x)在x=a,b,c,d,e等点的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值时多少?在这些点附近,函数y=f(x)导数的正负有什么规律?(1)函数y=f(x)在点x=a的函数值f(a)比它在点附近其他点的函数值都小,而且在x=a点附近的左侧fx0;(2)函数y=f(x)在点x=b的函数值f(b)比它在点附近其他点的函数值都大,而且在x=b点附近的左侧fx0,右侧fx0.1极值点与极值(1)极小值点与极小值若函数yf (x)在点xa的函数值f (a)比它在点xa附近其他点的函

5、数值都小,f (a)_,而且在点xa附近的左侧_,右侧_,就把点a叫做函数yf (x)的极小值点,_叫做函数yf (x)的极小值0 ;f (x)0;f (x)0;f (a) (2)极大值点与极大值若函数yf (x)在点xb的函数值f (b)比它在点xb附近其他点的函数值都大,f (b)_,而且在点xb附近的左侧_,右侧_,就把点b叫做函数yf (x)的极大值点,_叫做函数yf (x)的极大值(3)极大值点、极小值点统称为_;极大值、极小值统称为_0 ;f (x)0;f (x)0;f (b);极值点 ;极值 1函数f (x)的定义域为R,导函数f (x)的图象如图所示,则函数f (x)()A无极

6、大值点,有四个极小值点B有三个极大值点,两个极小值点C有两个极大值点,两个极小值点D有四个极大值点,无极小值点C设yf (x)的图象与x轴的交点从左到右横坐标依次为x1,x2,x3,x4,则f (x)在xx1,xx3处取得极大值,在xx2,xx4处取得极小值三、典例解析例5. 求函数fx=13x3-4x2+4的极值.解:因为 fx=13x3-4x2+4 的定义域为R,所以fx=x2-4 =(x+2)(x-2)令fx=0,解得:x1=-2,x2=2当x变化时,fx, fx,的变化情况如下表因此,当x=-2时,fx有极大值,极大值为f-2= 283; 当x=2时,fx有极小值,极小值为f2=- 4

7、3.函数fx=13x3-4x2+4的图像如图所示.问题1:函数的极大值一定大于极小值吗?一般地,求函数yf(x)的极值的步骤(1)求出函数的定义域及导数f(x);(2)解方程f(x)0,得方程的根x0(可能不止一个);(3)用方程f(x)0的根,顺次将函数的定义域分成若干个开区间,可将x,f(x),f(x)在每个区间内的变化情况列在同一个表格中;(4)由f(x)在各个开区间内的符号,判断f(x)在f(x)0的各个根处的极值情况:如果左正右负,那么函数f(x)在这个根处取得极大值;如果左负右正,那么函数f(x)在这个根处取得极小值;如果导数值在这个根左右两侧同号,那么这个根不是极值点.问题2:导

8、数为0的点一定是极值点吗?提示不一定,如f (x)x3,f (0)0, 但x0不是f (x)x3的极值点所以,当f (x0)0时,要判断xx0是否为f (x)的极值点,还要看f (x)在x0两侧的符号是否相反跟踪训练1 求下列函数的极值:(1)yx33x29x5;(2)yx3(x5)2. 解(1)y3x26x9,令y0,即3x26x90,解得x11,x23.当x变化时,y,y的变化情况如下表:x(,1)1(1,3)3(3,)y00y极大值极小值当x1时,函数yf (x)有极大值,且f (1)10;当x3时,函数yf (x)有极小值,且f (3)22.(2)y3x2(x5)22x3(x5)5x2

9、(x3)(x5)令y0,即5x2(x3)(x5)0,解得x10,x23,x35.当x变化时,y与y的变化情况如下表:x(,0)0(0,3)3(3,5)5(5,)y000y无极值极大值108极小值0x0不是y的极值点;x3是y的极大值点,y极大值f (3)108;x5是y的极小值点,y极小值f (5)0.温故知新,提出问题,引导学生探究运用导数研究函数的极值。发展学生数学抽象、直观想象、数学运算、数学建模的核心素养。 通过特例,体会导数与函数极值之间的关系,发展学生直观想象、数学抽象、数学运算和数学建模的核心素养。通过典型例题的分析和解决,帮助学生掌握运用导数求函数极值的一般方法,发展学生数学运

10、算,直观想象和数学抽象的核心素养。三、达标检测1.函数f (x)的定义域为R,它的导函数yf (x)的部分图象如图所示,则下面结论错误的是()A在(1,2)上函数f (x)为增函数B在(3,4)上函数f (x)为减函数C在(1,3)上函数f (x)有极大值Dx3是函数f (x)在区间1,5上的极小值点D由题图可知,当1x2时,f (x)0,当2x4时,f (x)0,当4x5时,f (x)0,x2是函数f (x)的极大值点,x4是函数f (x)的极小值点,故A,B,C正确,D错误2设函数f (x)xex,则()Ax1为f (x)的极大值点Bx1为f (x)的极小值点Cx1为f (x)的极大值点D

11、x1为f (x)的极小值点D令f (x)exxex(1x)ex0,得x1.当x1时,f (x)0;当x1时,f (x)0.故当x1时,f (x)取得极小值3已知函数f (x)x33ax23(a2)x1既有极大值又有极小值,则实数a的取值范围是_(,1)(2,)f (x)3x26ax3(a2),函数f (x)既有极大值又有极小值,方程f (x)0有两个不相等的实根,36a236(a2)0,即a2a20,解得a2或a1.4已知函数f (x)2ef (e)ln x,则函数f (x)的极大值为_2ln 2f (x),故f (e),解得f (e),所以f (x)2ln x,f (x).由f (x)0得0

12、x2e,f (x)0得x2e.所以函数f (x)在(0,2e)单调递增,在(2e,)单调递减,故f (x)的极大值为f (2e)2ln 2e22ln 2.通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。四、小结求可导函数yf (x)的极值的方法解方程f (x)0,当f (x0)0时:(1)如果在x0附近的左侧f (x)0,右侧f (x)0,那么f (x0)是极大值;(2)如果在x0附近的左侧f (x)0,右侧f (x)0,那么f (x0)是极小值 五、课时练通过总结,让学生进一步巩固本节所学内容,提高概括能力。运用“问题探究式”“观察发现式”“讨论式”的教学方法,本节课在前一节所学利用导数求单调性的基础上,引导学生通过生活实例、观察图象,自己探究归纳、总结出函数的极值定义及利用导数求极值的方法。让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|