1、5.3.2 函数的极值与最大(小)值 (1) 本节课选自2019人教A版高中数学选择性必修二第四章数列,本节课主要学习函数的极值与最大(小)值 学生已经具有导数概念、导数几何意义、导数计算、函数的单调性等相关的数学概念知识,对函数的单调性有一定的认识,对相应导数的内容也具有一定的储备。函数的极值与最值是函数的一个重要性质。在学习运用导数判断函数单调性的基础上,研究和学习函数的极值与最值是导数的一个重要应用,注意培养学生数形结合思想、特殊到一般的研究方法,发展学生直观想象、数学抽象、逻辑推理和数学运算核心素养。课程目标学科素养A.了解函数极值的概念,会从函数图象直观认识函数极值与导数的关系.B初
2、步掌握求函数极值的方法 C体会渗透在数学中的整体与局部的辩证关系1.数学抽象:求函数极值的方法 2.逻辑推理:导数值为零与函数极值的关系 3.数学运算:运用导数求函数极值 4.直观想象:导数与极值的关系重点:求函数极值 难点:函数极值与导数的关系 多媒体教学过程教学设计意图核心素养目标一、 温故知新1.函数f (x)的单调性与导函数f (x)正负的关系定义在区间(a,b)内的函数yf (x):f (x)的正负f (x)的单调性f (x)0单调递_f (x)0单调递_增 ;减 2判断函数yf (x)的单调性第1步:确定函数的_;第2步:求出导数f (x)的_;第3步:用f (x)的_将f (x)
3、的定义域划分为若干个区间,列表给出f (x)在各区间上的_,由此得出函数yf (x)在定义域内的单调性定义域 ;零点 ;零点 ;正负 二、探究新知探究1:观察下图,我们发现当t=a时,高台跳水运动员距水面的高度最大,那么函数h(t)在此点处的导数是多少?此点附件的函数图象有什么特点?相应地,导数的正负有什么变化规律? 放大t=a附近函数h(t)的图像,如图,可以看出,ha=0;在t=a的附近,当t0;当ta时,函数h(t)单调递减,ht0.这就是说,在t=a附近,函数值先增(当t0)后减(当ta时,ht0)这样,当t在a的附近从小到大经过a时,ht先正后负,且ht连续变化,于是有ha=0.对于
4、一般的函数y=f(x),是否具有同样的性质?以a,b为例进行说明.探究2:观察下图,函数y=f(x)在x=a,b,c,d,e等点的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值时多少?在这些点附近,函数y=f(x)导数的正负有什么规律?(1)函数y=f(x)在点x=a的函数值f(a)比它在点附近其他点的函数值都小,而且在x=a点附近的左侧fx0;(2)函数y=f(x)在点x=b的函数值f(b)比它在点附近其他点的函数值都大,而且在x=b点附近的左侧fx0,右侧fx0.1极值点与极值(1)极小值点与极小值若函数yf (x)在点xa的函数值f (a)比它在点xa附近其他点的函
5、数值都小,f (a)_,而且在点xa附近的左侧_,右侧_,就把点a叫做函数yf (x)的极小值点,_叫做函数yf (x)的极小值0 ;f (x)0;f (x)0;f (a) (2)极大值点与极大值若函数yf (x)在点xb的函数值f (b)比它在点xb附近其他点的函数值都大,f (b)_,而且在点xb附近的左侧_,右侧_,就把点b叫做函数yf (x)的极大值点,_叫做函数yf (x)的极大值(3)极大值点、极小值点统称为_;极大值、极小值统称为_0 ;f (x)0;f (x)0;f (b);极值点 ;极值 1函数f (x)的定义域为R,导函数f (x)的图象如图所示,则函数f (x)()A无极
6、大值点,有四个极小值点B有三个极大值点,两个极小值点C有两个极大值点,两个极小值点D有四个极大值点,无极小值点C设yf (x)的图象与x轴的交点从左到右横坐标依次为x1,x2,x3,x4,则f (x)在xx1,xx3处取得极大值,在xx2,xx4处取得极小值三、典例解析例5. 求函数fx=13x3-4x2+4的极值.解:因为 fx=13x3-4x2+4 的定义域为R,所以fx=x2-4 =(x+2)(x-2)令fx=0,解得:x1=-2,x2=2当x变化时,fx, fx,的变化情况如下表因此,当x=-2时,fx有极大值,极大值为f-2= 283; 当x=2时,fx有极小值,极小值为f2=- 4
7、3.函数fx=13x3-4x2+4的图像如图所示.问题1:函数的极大值一定大于极小值吗?一般地,求函数yf(x)的极值的步骤(1)求出函数的定义域及导数f(x);(2)解方程f(x)0,得方程的根x0(可能不止一个);(3)用方程f(x)0的根,顺次将函数的定义域分成若干个开区间,可将x,f(x),f(x)在每个区间内的变化情况列在同一个表格中;(4)由f(x)在各个开区间内的符号,判断f(x)在f(x)0的各个根处的极值情况:如果左正右负,那么函数f(x)在这个根处取得极大值;如果左负右正,那么函数f(x)在这个根处取得极小值;如果导数值在这个根左右两侧同号,那么这个根不是极值点.问题2:导
8、数为0的点一定是极值点吗?提示不一定,如f (x)x3,f (0)0, 但x0不是f (x)x3的极值点所以,当f (x0)0时,要判断xx0是否为f (x)的极值点,还要看f (x)在x0两侧的符号是否相反跟踪训练1 求下列函数的极值:(1)yx33x29x5;(2)yx3(x5)2. 解(1)y3x26x9,令y0,即3x26x90,解得x11,x23.当x变化时,y,y的变化情况如下表:x(,1)1(1,3)3(3,)y00y极大值极小值当x1时,函数yf (x)有极大值,且f (1)10;当x3时,函数yf (x)有极小值,且f (3)22.(2)y3x2(x5)22x3(x5)5x2
9、(x3)(x5)令y0,即5x2(x3)(x5)0,解得x10,x23,x35.当x变化时,y与y的变化情况如下表:x(,0)0(0,3)3(3,5)5(5,)y000y无极值极大值108极小值0x0不是y的极值点;x3是y的极大值点,y极大值f (3)108;x5是y的极小值点,y极小值f (5)0.温故知新,提出问题,引导学生探究运用导数研究函数的极值。发展学生数学抽象、直观想象、数学运算、数学建模的核心素养。 通过特例,体会导数与函数极值之间的关系,发展学生直观想象、数学抽象、数学运算和数学建模的核心素养。通过典型例题的分析和解决,帮助学生掌握运用导数求函数极值的一般方法,发展学生数学运
10、算,直观想象和数学抽象的核心素养。三、达标检测1.函数f (x)的定义域为R,它的导函数yf (x)的部分图象如图所示,则下面结论错误的是()A在(1,2)上函数f (x)为增函数B在(3,4)上函数f (x)为减函数C在(1,3)上函数f (x)有极大值Dx3是函数f (x)在区间1,5上的极小值点D由题图可知,当1x2时,f (x)0,当2x4时,f (x)0,当4x5时,f (x)0,x2是函数f (x)的极大值点,x4是函数f (x)的极小值点,故A,B,C正确,D错误2设函数f (x)xex,则()Ax1为f (x)的极大值点Bx1为f (x)的极小值点Cx1为f (x)的极大值点D
11、x1为f (x)的极小值点D令f (x)exxex(1x)ex0,得x1.当x1时,f (x)0;当x1时,f (x)0.故当x1时,f (x)取得极小值3已知函数f (x)x33ax23(a2)x1既有极大值又有极小值,则实数a的取值范围是_(,1)(2,)f (x)3x26ax3(a2),函数f (x)既有极大值又有极小值,方程f (x)0有两个不相等的实根,36a236(a2)0,即a2a20,解得a2或a1.4已知函数f (x)2ef (e)ln x,则函数f (x)的极大值为_2ln 2f (x),故f (e),解得f (e),所以f (x)2ln x,f (x).由f (x)0得0
12、x2e,f (x)0得x2e.所以函数f (x)在(0,2e)单调递增,在(2e,)单调递减,故f (x)的极大值为f (2e)2ln 2e22ln 2.通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。四、小结求可导函数yf (x)的极值的方法解方程f (x)0,当f (x0)0时:(1)如果在x0附近的左侧f (x)0,右侧f (x)0,那么f (x0)是极大值;(2)如果在x0附近的左侧f (x)0,右侧f (x)0,那么f (x0)是极小值 五、课时练通过总结,让学生进一步巩固本节所学内容,提高概括能力。运用“问题探究式”“观察发现式”“讨论式”的教学方法,本节课在前一节所学利用导数求单调性的基础上,引导学生通过生活实例、观察图象,自己探究归纳、总结出函数的极值定义及利用导数求极值的方法。让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。