ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:163.69KB ,
文档编号:284775      下载积分:4 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-284775.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(欢乐马)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(21.2降次-解一元二次方程(第五课时) (2).doc)为本站会员(欢乐马)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

21.2降次-解一元二次方程(第五课时) (2).doc

1、222降次-解一元二次方程(第五课时)22.2.4 一元二次方程的根与系数的关系随堂检测1、已知一元二次方程的两根为、,则_2、关于的一元二次方程的两个实数根分别为1和2,则_,_3、一元二次方程的两实数根相等,则的值为( )A B或 C D或4、已知方程的两个根为、,求的值.典例分析已知关于的一元二次方程有两个实数根和(1)求实数的取值范围;(2)当时,求的值(提示:如果、是一元二次方程的两根,那么有,)分析:本题综合考查了一元二次方程根的判别式和根与系数的关系,特别是第(2)问中,所求的值一定须在一元二次方程有根的大前提下才有意义.这一点是同学们常常容易忽略出错的地方.解:(1)一元二次方

2、程有两个实数根,.(2)当时,即,或.当时,依据一元二次方程根与系数的关系可得,.又由(1)一元二次方程有两个实数根时的取值范围是,不成立,故无解;当时,,方程有两个相等的实数根,.综上所述,当时,.课下作业拓展提高1、关于的方程的两根同为负数,则( )A且 B且C且 D且2、若关于的一元二次方程的两个实数根分别是,且满足.则的值为( )A、1或 B、1 C、 D、不存在(注意:的值不仅须满足,更须在一元二次方程有根的大前提下才有意义,即的值必须使得才可以.)3、已知、是方程的两实数根,求的值.4、已知关于的方程的一个根是另一个根的2倍,求的值.5、已知,是关于的方程的两个实数根(1)求,的值

3、;(2)若,是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值体验中考1、(河北)已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是( )A B3 C6 D9(提示:如果直接解方程,可以得到直角三角形的两条直角边的长,再运用勾股定理求出直角三角形的斜边长.但由于方程的两根是无理数,计算十分麻烦.因此应充分利用一元二次方程根与系数的关系进行简便求解.)2、(黄石)已知是关于的一元二次方程的两个实数根,则式子的值是( )A B C D参考答案:随堂检测1、. 依据一元二次方程根与系数的关系可得.2、3,2 依据一元二次方

4、程根与系数的关系可得,.3、B. ,或,故选B.4、解:由一元二次方程根与系数的关系可得:,.课下作业拓展提高1、A. 由一元二次方程根与系数的关系可得:,当方程的两根同为负数时,且,故选A.2、C. 由一元二次方程根与系数的关系可得:,解得,.当时,此时方程无实数根,故不合题意,舍去.当时,故 符合题意.综上所述,.故选C.3、解:由一元二次方程根与系数的关系可得:,.4、解:设方程的两根为、,且不妨设.则由一元二次方程根与系数的关系可得:,代入,得,.5、解:(1)原方程变为:,即,(2)直角三角形的面积为=,当且m2时,以x1,x2为两直角边长的直角三角形的面积最大,最大面积为或体验中考1、B. 设和是方程的两个根,由一元二次方程根与系数的关系可得: ,这个直角三角形的斜边长是3,故选B.2、D 由一元二次方程根与系数的关系可得:,.故选D.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|