ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:585.34KB ,
文档编号:286011      下载积分:4 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-286011.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(欢乐马)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高考数学真题精选题推理与证明 (理科).doc)为本站会员(欢乐马)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高考数学真题精选题推理与证明 (理科).doc

1、M推理与证明M1合情推理与演绎推理11M12012陕西卷 观察下列不等式1,1,1,照此规律,第五个不等式为_111解析 本小题主要考查了归纳与推理的能力,解题的关键是对给出的几个事例分析,找出规律,推出所要的结果从几个不等式左边分析,可得出第五个式子的左边为:1,对几个不等式右边分析,其分母依次为:2,3,4,所以第5个式子的分母应为6,而其分子依次为: 3,5,7,所以第5个式子的分子应为11,所以第5个式子应为:10),其中r为有理数,且0rg(1)0,从而f(a2)ng(a2)0,进而f(a2)是(0,1)上的增函数,因此f(a2)f(1)n2,所要证的不等式成立当a21时,令b,则0

2、b1,由已知的结论知,两边同时乘以a得所要证的不等式综上,当a21且a20时,有Sn(a1an),当且仅当n1,2或a21时等号成立22B12、M3、M22012湖北卷 (1)已知函数f(x)rxxr(1r)(x0),其中r为有理数,且0r1.求f(x)的最小值;(2)试用(1)的结果证明如下命题:设a10,a20,b1,b2为正有理数若b1b21,则ab11ab22a1b1a2b2;(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题注:当为正有理数时,有求导公式(x)x1.22解:(1)f(x)rrxr1r(1xr1),令f(x)0,解得x1.当0x1时,f(x)0,所

3、以f(x)在(0,1)内是减函数;当x1时,f(x)0,所以f(x)在(1,)内是增函数故函数f(x)在x1处取得最小值f(1)0.(2)由(1)知,当x(0,)时,有f(x)f(1)0,即xrrx(1r)若a1,a2中有一个为0,则ab11ab22a1b1a2b2成立;若a1,a2均不为0,又b1b21,可得b21b1,于是在中令x,rb1,可得b1b1(1b1),即ab11a1b12a1b1a2(1b1),亦即ab11ab22a1b1a2b2.综上,对a10,a20,b1,b2为正有理数且b1b21,总有ab11ab22a1b1a2b2.(3)(2)中命题的推广形式为:若a1,a2,an为

4、非负实数,b1,b2,bn为正有理数若b1b1bn1,则ab11ab22abnna1b1a2b2anbn.用数学归纳法证明如下:当n1时,b11,有a1a1,成立假设当nk时,成立,即若a1,a2,ak为非负实数,b1,b2,bk为正有理数,且b1b2bk1,则ab11ab22abkka1b1a2b2akbk.当nk1时,已知a1,a2,ak,ak1为非负实数,b1,b2,bk,bk1为正有理数,且b1b2bkbk11,此时0bk11,即 1bk10,于是ab11ab22abkkabk1k1(ab11ab22abkk)abk1k1(a1a2ak)1bk1abk1k1.因1,由归纳假设可得a1a

5、2aka1a2ak,从而ab11ab22abkkabk1k11bk1abk1k1.又因(1bk1)bk11,由得1bk1abk1k1(1bk1)ak1bk1a1b1a2b2akbkak1bk1,从而ab11ab22abkkabk1k1a1b1a2b2akbkak1bk1.故当nk1时,成立由可知,对一切正整数n,所推广的命题成立说明:(3)中如果推广形式中指出式对n2成立,则后续证明中不需讨论n1的情况22 D3、M32012全国卷 函数f(x)x22x3.定义数列xn如下:x12,xn1是过两点P(4,5)、Qn(xn,f(xn)的直线PQn与x轴交点的横坐标(1)证明:2xnxn13;(2

6、)求数列xn的通项公式22解:(1)用数学归纳法证明:2xnxn13.当n1时,x12,直线PQ1的方程为y5(x4),令y0,解得x2,所以2x1x23.假设当nk时,结论成立,即2xkxk13.直线PQk1的方程为y5(x4),令y0,解得xk2.由归纳假设知xk240,即xk1xk2.所以2xk1xk23,即当nk1时,结论成立由、知对任意的正整数n,2xnxn13.(2)由(1)及题意得xn1.设bnxn3,则1,5,数列是首项为,公比为5的等比数列,因此5n1,即bn,所以数列xn的通项公式为xn3.M4 单元综合23M42012江苏卷 设集合Pn1,2,n,nN*.记f(n)为同时

7、满足下列条件的集合A的个数:APn;若xA,则2xA;若xPnA,则2xPnA.(1)求f(4);(2)求f(n)的解析式(用n表示)23解:(1)当n4时,符合条件的集合A为:2,1,4,2,3,1,3,4,故f(4)4.(2)任取偶数xPn,将x除以2,若商仍为偶数,再除以2,经过k次以后,商必为奇数,此时记商为m,于是xm2k,其中m为奇数,kN*.由条件知,若mA,则xAk为偶数;若mA,则xAk为奇数于是x是由m是否属于A确定的设Qn是Pn中所有奇数的集合,因此f(n)等于Qn的子集个数当n为偶数(或奇数)时,Pn中奇数的个数是,所以f(n)20B3、D4、M42012北京卷 设A是

8、由mn个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记S(m,n)为所有这样的数表构成的集合对于AS(m,n),记ri(A)为A的第i行各数之和(1im),cj(A)为A的第j列各数之和(1jn);记k(A)为|r1(A)|,|r2(A)|,|rm(A)|,|c1(A)|,|c2(A)|,|cn(A)|中的最小值(1)对如下数表A,求k(A)的值;110.80.10.31(2)设数表AS(2,3)形如11cab1求k(A)的最大值;(3)给定正整数t,对于所有的AS(2,2t1),求k(A)的最大值20解:(1)因为r1(A)1.2,r2(A)1.2,c1(A)1

9、.1,c2(A)0.7,c3(A)1.8,所以k(A)0.7.(2)不妨设ab.由题意得c1ab.又因c1,所以ab0,于是a0.r1(A)2c1,r2(A)r1(A)1,c1(A)1a,c2(A)1b,c3(A)(1a)(1b)(1a)所以k(A)1a1.当ab0且c1时,k(A)取得最大值1.(3)对于给定的正整数t,任给数表AS(2,2t1)如下:a1a2a2t1b1b2b2t1任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表A*S(2,2t1),并且k(A)k(A*)因此,不妨设r1(A)0,且cj(A)0(j1,2,t1)由k(A)的定义知,k(A)r1(A),k(A)cj(A)(j1,2,t1)又因为c1(A)c2(A)c2t1(A)0,所以(t2)k(A)r1(A)c1(A)c2(A)ct1(A)r1(A)ct2(A)c2t1(A)jj(t1)t(1)2t1.所以k(A).对数表A0:第1列第2列第t1列第t2列第2t1列1111111 则A0S(2,2t1),且k(A0).综上,对于所有的AS(2,2t1),k(A)的最大值为.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|