1、M推理与证明M1合情推理与演绎推理11M12012陕西卷 观察下列不等式1,1,1,照此规律,第五个不等式为_111解析 本小题主要考查了归纳与推理的能力,解题的关键是对给出的几个事例分析,找出规律,推出所要的结果从几个不等式左边分析,可得出第五个式子的左边为:1,对几个不等式右边分析,其分母依次为:2,3,4,所以第5个式子的分母应为6,而其分子依次为: 3,5,7,所以第5个式子的分子应为11,所以第5个式子应为:10),其中r为有理数,且0rg(1)0,从而f(a2)ng(a2)0,进而f(a2)是(0,1)上的增函数,因此f(a2)f(1)n2,所要证的不等式成立当a21时,令b,则0
2、b1,由已知的结论知,两边同时乘以a得所要证的不等式综上,当a21且a20时,有Sn(a1an),当且仅当n1,2或a21时等号成立22B12、M3、M22012湖北卷 (1)已知函数f(x)rxxr(1r)(x0),其中r为有理数,且0r1.求f(x)的最小值;(2)试用(1)的结果证明如下命题:设a10,a20,b1,b2为正有理数若b1b21,则ab11ab22a1b1a2b2;(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题注:当为正有理数时,有求导公式(x)x1.22解:(1)f(x)rrxr1r(1xr1),令f(x)0,解得x1.当0x1时,f(x)0,所
3、以f(x)在(0,1)内是减函数;当x1时,f(x)0,所以f(x)在(1,)内是增函数故函数f(x)在x1处取得最小值f(1)0.(2)由(1)知,当x(0,)时,有f(x)f(1)0,即xrrx(1r)若a1,a2中有一个为0,则ab11ab22a1b1a2b2成立;若a1,a2均不为0,又b1b21,可得b21b1,于是在中令x,rb1,可得b1b1(1b1),即ab11a1b12a1b1a2(1b1),亦即ab11ab22a1b1a2b2.综上,对a10,a20,b1,b2为正有理数且b1b21,总有ab11ab22a1b1a2b2.(3)(2)中命题的推广形式为:若a1,a2,an为
4、非负实数,b1,b2,bn为正有理数若b1b1bn1,则ab11ab22abnna1b1a2b2anbn.用数学归纳法证明如下:当n1时,b11,有a1a1,成立假设当nk时,成立,即若a1,a2,ak为非负实数,b1,b2,bk为正有理数,且b1b2bk1,则ab11ab22abkka1b1a2b2akbk.当nk1时,已知a1,a2,ak,ak1为非负实数,b1,b2,bk,bk1为正有理数,且b1b2bkbk11,此时0bk11,即 1bk10,于是ab11ab22abkkabk1k1(ab11ab22abkk)abk1k1(a1a2ak)1bk1abk1k1.因1,由归纳假设可得a1a
5、2aka1a2ak,从而ab11ab22abkkabk1k11bk1abk1k1.又因(1bk1)bk11,由得1bk1abk1k1(1bk1)ak1bk1a1b1a2b2akbkak1bk1,从而ab11ab22abkkabk1k1a1b1a2b2akbkak1bk1.故当nk1时,成立由可知,对一切正整数n,所推广的命题成立说明:(3)中如果推广形式中指出式对n2成立,则后续证明中不需讨论n1的情况22 D3、M32012全国卷 函数f(x)x22x3.定义数列xn如下:x12,xn1是过两点P(4,5)、Qn(xn,f(xn)的直线PQn与x轴交点的横坐标(1)证明:2xnxn13;(2
6、)求数列xn的通项公式22解:(1)用数学归纳法证明:2xnxn13.当n1时,x12,直线PQ1的方程为y5(x4),令y0,解得x2,所以2x1x23.假设当nk时,结论成立,即2xkxk13.直线PQk1的方程为y5(x4),令y0,解得xk2.由归纳假设知xk240,即xk1xk2.所以2xk1xk23,即当nk1时,结论成立由、知对任意的正整数n,2xnxn13.(2)由(1)及题意得xn1.设bnxn3,则1,5,数列是首项为,公比为5的等比数列,因此5n1,即bn,所以数列xn的通项公式为xn3.M4 单元综合23M42012江苏卷 设集合Pn1,2,n,nN*.记f(n)为同时
7、满足下列条件的集合A的个数:APn;若xA,则2xA;若xPnA,则2xPnA.(1)求f(4);(2)求f(n)的解析式(用n表示)23解:(1)当n4时,符合条件的集合A为:2,1,4,2,3,1,3,4,故f(4)4.(2)任取偶数xPn,将x除以2,若商仍为偶数,再除以2,经过k次以后,商必为奇数,此时记商为m,于是xm2k,其中m为奇数,kN*.由条件知,若mA,则xAk为偶数;若mA,则xAk为奇数于是x是由m是否属于A确定的设Qn是Pn中所有奇数的集合,因此f(n)等于Qn的子集个数当n为偶数(或奇数)时,Pn中奇数的个数是,所以f(n)20B3、D4、M42012北京卷 设A是
8、由mn个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记S(m,n)为所有这样的数表构成的集合对于AS(m,n),记ri(A)为A的第i行各数之和(1im),cj(A)为A的第j列各数之和(1jn);记k(A)为|r1(A)|,|r2(A)|,|rm(A)|,|c1(A)|,|c2(A)|,|cn(A)|中的最小值(1)对如下数表A,求k(A)的值;110.80.10.31(2)设数表AS(2,3)形如11cab1求k(A)的最大值;(3)给定正整数t,对于所有的AS(2,2t1),求k(A)的最大值20解:(1)因为r1(A)1.2,r2(A)1.2,c1(A)1
9、.1,c2(A)0.7,c3(A)1.8,所以k(A)0.7.(2)不妨设ab.由题意得c1ab.又因c1,所以ab0,于是a0.r1(A)2c1,r2(A)r1(A)1,c1(A)1a,c2(A)1b,c3(A)(1a)(1b)(1a)所以k(A)1a1.当ab0且c1时,k(A)取得最大值1.(3)对于给定的正整数t,任给数表AS(2,2t1)如下:a1a2a2t1b1b2b2t1任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表A*S(2,2t1),并且k(A)k(A*)因此,不妨设r1(A)0,且cj(A)0(j1,2,t1)由k(A)的定义知,k(A)r1(A),k(A)cj(A)(j1,2,t1)又因为c1(A)c2(A)c2t1(A)0,所以(t2)k(A)r1(A)c1(A)c2(A)ct1(A)r1(A)ct2(A)c2t1(A)jj(t1)t(1)2t1.所以k(A).对数表A0:第1列第2列第t1列第t2列第2t1列1111111 则A0S(2,2t1),且k(A0).综上,对于所有的AS(2,2t1),k(A)的最大值为.