ImageVerifierCode 换一换
格式:PPT , 页数:39 ,大小:3.82MB ,
文档编号:2891911      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-2891911.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(1.3.1利用导数判断函数的单调性课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

1.3.1利用导数判断函数的单调性课件.ppt

1、鹤壁高中高二数学组 郑海霞引例(2017新课标卷21题):已知(1)讨论 的单调性;(2)若 有两个零点,求实数 的取值范围xeaaexfxx)2()(2)(xf)(xf下一页a aa问题:上述题目涉及到函数的单调性,我们采用什么工具来解决这些问题?导数 3.2 导数的应用 3.2.1 函数的单调性与导数考纲要求考试范围与要求 要点通解 考向了解函数的单调性与导数的关系此处历年常考,且和其他知识有机整合。此题属于压轴题,运用导数法探究函数的单调性、极值或最值,常有较大难度。选择题、填空题、解选择题、填空题、解答题皆有出现,但以答题皆有出现,但以解答题为主,作为压解答题为主,作为压轴题,有较大难

2、度,轴题,有较大难度,主要考查利用导数研主要考查利用导数研究函数的单调性、极究函数的单调性、极值与最值、零点、恒值与最值、零点、恒成立以及与其它知识成立以及与其它知识的综合问题的综合问题 能利用导数研究 函数的单调性会求函数的单调区间(其中多项式函数不超过三次)目标定位 重点难点1掌握函数的单调性与导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间;3.会用导数解决单调性的应用问题。1.用导数求函数的单调区间;2.用导数解决单调性的应用问题。一、函数单调性与导数的关系单调性的充分条件二、函数单调性的必要条件单调递增(或递减单调递增(或递减))0(0)( xf思考函数在区间(a,b)

3、上单调递增的充要条件是什么?0),()(0)( ),()(的任一子区间内不恒为在且上递增在baxfxfbaxfy判断函数的单调性例1 的图象大致是()的图象如下图所示,则已知函数)()( xfyxxfy变式C求函数的单调区间例2 求下列函数的单调区间xxxfln2)()1(),(,减区间为()函数的增区间为(解得即得解得即得)函数的定义域为解:(, 111,1, 01,1, 1ln, 01ln0)( 10, 1ln, 01ln0)( )ln() 1(ln2)( 1, 0|12eexxexxxfexxxxfxxxxfxxx下一页变式1 把例2中的函数变为下列形式,单调性又是怎样的? xxaxfl

4、n12)(.)(, 0)( ,21012, 111,1, 010, 01ln0)( 1,101ln0)( 21, 012, 111,1, 01,1, 1ln, 01ln0)( 1001ln0)( 21, 012)ln()1)(ln12()( 1, 0|12在定义域上无单调性时即当),(,增区间为()函数的减区间为(即得,得时,由即当),(,减区间为()函数的增区间为(解得即得,得时,由即当)函数的定义域为解:(xfxfaaeeexxxfxexxxfaaeexexxxxfexxxfaaxxxaxfxxx变式2 引例(1).)ln(,)ln,()(0)( )ln(, 0)( )ln,(ln0)(

5、, 0)(.)(0)( , 0)() 12)(1(1)2(2)( ,)() 1 (2上单调递增,在上单调递减在时,时,当,得则由若上单调递减在,则若的定义域为函数解:aaxfxfaxxfaxaxxfaiiRxfxfaieaeeaaexfRxfxxxx多个单调区间不能轻易的并起来实例 例2(1)单调性的简单应用(一)利用单调性求参数的取值范围.), 1 (ln)(()的取值范围是则上单调递增,在区间若函数kxkxxf例3变式1 若例3(1)中的函数 在 上存在增区间,k的取值范围是什么?), 1 ( ), 0(变式2 若例3(1)中的函数 在 上不单调,k的取值范围又是什么?), 1 ( )1

6、,0(xkxxfln)(xkxxfln)( 例4 已知函数 (1)判断函数的单调性; (2)若函数在 上单调,求实数 的取值范围; (3)若函数在 上存在增区间,求实数 的取值范围; (4)若函数在 上递减,求实数 的取值范围; (5)若函数的减区间是 ,求实数 的取值范围; (6)若函数在 上递减,在 上递增,求 的范围; (7)若函数在 上都递增,求 的范围; (8)若函数在 上不单调,求实数 的取值范围; 1) 1(2131)(23xaaxxxfRaaR) 3 , 1 (a) 3 , 1 (a) 3 , 1 ()6 , 4(a), 6()0 ,- (,a) 3 , 1 (a)4 , 2)

7、(8(7 , 1)7(5 , 4)6(4)5(4)4(0)( ) 3(20)( )2() 1 , 1()(), 1 (),1,()(, 11,0)( 2) 1, 1 ()(), 1(),1 ,()(, 11,0)( 2)(, 0)( 2) 1 ()1()(1(1)( 2;上有解,在;上恒成立,在上单调递减在上单调递增在或时时,当上单调递减在上单调递增在或时时,当上单调递增在时,当aaRaRxfaRxfaxfaxfaxxxfaaxfaxfaxxxfaRxfxfaaxxaaxxxf【挑战能力】.|,11| )()(|),)(1 ,21(,),0(ln)(21212121的取值范围求正数若对已知函数

8、axxxfxfxxxxaxaxxf围问题了单调性求参数的取值范该问题就转化成了利用上递增在区间分析:) 1 ,21(1)()(|11| )()(|2121xxfxgxxxfxf),23,2323)21()() 1 ,21()(, 011)( ) 1 ,21(,1)(,) 1 ,21(1) 1 ,21(011)( ) 1 ,21()() 1 ,21(,1)()(1)(1)(11)()(|11| )()(|) 1 ,21()(, 01)( 2222111221212121的取值范围是即正数上单调递减,在函数记上恒成立在上恒成立在上单调递增,在则函数,记即上单调递增,不妨设在区间解:aahxhxhx

9、xhxxxxhxxaxxaxgxgxxxfxgxxfxxfxxxfxfxxxfxfxxxfxaxf【规律方法】1.利用函数的单调性求参数范围问题的方法 函数在某个区间上递增(递减)利用 转化为不等式在区间上恒成立问题.但要注意验证 的解不能是(a,b)的任意子区间.)0)( (0)( xfxf0)( xf函数在区间内单调转化转化导数满足的关系式分离参数构造函数求函数的最值结论2.对等号处理的两种思路【过关检测】1.设函数 在定义域内可导, 的图象如图1所示,则函数 的图象可能为 ( ))(xf)(xfy )( xfy DA求函数的单调区间单调性的简单应用3判断或证明函数的单调性12转化化归思想数形结合思想3分类讨论思想12课堂小结数学知识思想方法【课后作业】1.必做题 高考调研4749页2.选做题 选做选做 谢 谢39

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|