ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:1.08MB ,
文档编号:3006620      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3006620.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(三亚风情)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(3.4-行列式的计算解读课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

3.4-行列式的计算解读课件.ppt

1、3.2 行列式的性质行列式的性质3.3 行列式与矩阵的逆行列式与矩阵的逆3.4 行列式的计算行列式的计算3.5 行列式与矩阵的秩行列式与矩阵的秩 3.1 n 阶行列式的概念阶行列式的概念第3章 行列式 3.4 行列式的计算 3.4.1 降阶法降阶法 内容内容小结小结 3.4.2 三角化方法三角化方法 3.4.3 归纳法归纳法 3.4.4 递推法递推法 3.4.5 分拆法分拆法 3.4.6 升阶法升阶法 行列式的计算3/29行列式计算常用方法常用方法有:降阶法、三角化方法、归纳法、递推法、分拆法、升阶法等. 行列式计算的理论根据理论根据:行列式的按行(列)展开法则行列式初等变换的性质行列式乘积法

2、则 行列式的计算4/29例3.9 计算四阶行列式 613325332731117|41319A.3.4.1 降阶法降阶法 应用初等变换使行列式的某行或某列的零元充分多, 然后按该行或该列展开, 化为低阶行列式来计算.415cc行列式的计算5/294156132533231124131|ccA解421,2,31439013590113504131irri4 41439( 1)( 1)13591135 2314392 1121135rr12321411011192 1120817rrrr2 11119( 1)( 2)817 70 .行列式的计算6/29解 将 | A| 按第 n 行展开, 得|xy

3、xyxyyx.例3.10 计算 n 阶行列式 11|( 1)|nnyxyyxyxy11( 1)nnyy()nnxy .1( 1)nnnxyxyxxyx 1( 1)nnnxx行列式的计算7/29例3.11 计算 n 阶行列式 |abbbbabbbbabbbbaA.解将第 2, 3, , n 列都加到第一列得3.4.2 三角化方法三角化方法 利用行列式的初等变换将其化为三角行列式.行列式的计算8/29(1)|(1)(1)(1)anbbbbanbabbanbbabanbbbaA11(1) 11bbbabbanbbabbba12,3,irrin行列式的计算9/2912,3,1(1) irrinbbba

4、banbabab1(1) ()nanb ab.行列式的计算10/29例3.12 计算 121212|nnnabaaaabaaaabA. 解 先把第一行乘以 (1) 加到以下各行, 再把后面各列加到第一列. 1220000nnaaabaabb112()nnaaab b.120|0nabaabbbbA行列式的计算11/293.4.3 归纳法归纳法 通过计算低阶行列式, 发现某种规律, 进而猜想 k 阶行列式符合这种规律, 然后证明 k1 阶行列式也呈现此规律, 这就是数学归纳法的思想.行列式的计算12/29 证 对行列式的阶数 n 用数学归纳法.21211Vxx21xx12(),ijj ixx 例

5、3.13 证明 Vandermonde 行列式行列式1222212111112111()nnnijj i nnnnnxxxVxxxxxxxx .因为 所以 n 2 时, 等式成立. 行列式的计算13/29112131122133112222213311,1,2111100()()()0()()()iinrx rnnnnninnn nnxxxxxxVx xxx xxx xxxxxxxxxxx 假设等式对 n 1阶 Vandermonde 行列式 Vn 1 成立, 232131122223111()()(),nnnnnnxxxxxxxxxxxxn 1阶阶Vandermonde行列式行列式则行列式的

6、计算14/29213112()()()()nnijj i nVxx xxxxxx 1(),ijj i nxx 因此由归纳法假设得 所以等式对所有 n 2 都成立. 行列式的计算15/293.4.4 递推法递推法 利用按行 (列) 展开法则, 将 n 阶行列式化成形式相同的 n 1 阶行列式, 从而建立递推关系, 反复应用这个递推关系便可求出 n 阶行列式.行列式的计算16/29例3.14 计算 111nababababDababab.解 将 Dn 按第一行展开, 得11()1nna baba b abDa ba b=110,1naba bababa bDn 1Dn 2行列式的计算17/2912

7、(),nnnDab DabD从而112()nnnnDaDb DaD因2212,Da b Daab b 222321()(),nnnb DaDbDaD故1nnnDaDb.再把第二个行列式按第一列展开, 得3,4,n 行列式的计算18/291nnnDaDb212nnna Dabb32213nnnna Da babb12211nnnnaDababb12()nnna aDbb1221nnnnnaabababb.于是 行列式的计算19/293.4.5 分拆法分拆法 分拆法是指利用行列式的性质将复杂的行列式分解为简单的行列式之和或之积.nxyyyzxyyDzzxyzzzx.例3.15 计算 n 阶行列式

8、解 先将 Dn 的最后一行拆开, 得行列式的计算20/29nxyyyzxyyDzzxyzzzz 000 xyyyzxyyzzxyxz 1()nz xy将 y 与 z 互换, 行列式 Dn 不变, 11()(),nnnDy xzxy D从而 1()nxz D.行列式的计算21/29当 z y 时, 解得()()nnnz xyy xzDzy.当 z y 时, 由例3.11 的结果知1(1) ()nnDxny xy.行列式的计算22/29解 细心观察可以发现, 当 n 3 时, 有例3.16 计算行列式211 2122 122212|111111111|nnnnnaa aa aa aaa aa aa

9、 aa.=行列式的计算23/291212111111nnaaaaaa=1212100111100,000100000nnaaaaaa从而当 n 3 时, A 0.行列式的计算24/2921|1|a.211 222 12|1111|aa aa aa =当 n 1 时, 显然 当 n 2 时, 有 212()aa.行列式的计算25/293.4.6 升阶法升阶法 为便于应用行列式的性质, 有时在原来的行列式中添加一行一列, 即把行列式的阶数增加1, 这就是升阶法.升阶必须给计算带来方便, 而且要求升阶后的行列式与原来的行列式相等.升阶法也叫加边法.行列式的计算26/29解 将行列式升阶, 得1313

10、1321111102222222,03333336|0|nnnnnnnnnnnnnnn=1313132222222233333|36nnnnnnnnnnnnnn=.例3.17 计算 行列式的计算27/29将新行列式的第二列依次与第 3, 4, , n 列交换, 再将新行列式第二列依次与第 3, 4, , n1 列交换, 再将新行列式第二列依次与第 3, 4, , n2 列交换, , 得 将新行列式第一行乘 i 加到第 i 行, 得 13213213211111222223333|3|nnnnnnnnnnn=1221221221111112222!133331nnnnnnnnnnn.行列式的计算28/29221(1)(2)22122211111112222( 1)!133331nnnnnnnnnnnnn (1)(2)21( 1)!nnnkk .转置的转置的Vandermonde行列式行列式将新行列式第一行的元乘 i 加到第 i 行, 得 13213213211111222223333|3|nnnnnnnnnnn=1221221221111112222!133331nnnnnnnnnnn行列式的计算29/29内容小结内容小结行列式计算常用方法有: :降阶法、三角化方法、归纳法、递推法、分拆法、 升阶法等.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|