ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:397.37KB ,
文档编号:30528      下载积分:0.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-30528.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(flying)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(全国版2019版高考数学一轮复习不等式选讲第2讲不等式的证明学案.doc)为本站会员(flying)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

全国版2019版高考数学一轮复习不等式选讲第2讲不等式的证明学案.doc

1、=【 ;精品教育资源文库 】 = 第 2 讲 不等式的证明 板块一 知识梳理 自主学习 必备知识 考点 1 比较法 比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种 考点 2 综合法 一般地,从 已知条件 出发,利用 定义 、公理、 定理 、性质等,经过一系列的 推理 、 论证而得出命题成立,这种证明方法叫做综合法综合法又叫由因导果法 考点 3 分析法 证明命题时,从 要证的结论 出发,逐步寻求使它成立的 充分条件 ,直至所需条件为 已知条件 或 一个明显成立的事实 (定义、公理或已证明的定理、性质等 ),从而得出要证的命题成立,这种证明方法叫做分 析法,这是一种执果索因的思考

2、和证明方法 考点 4 反证法 证明命题时先假设要证的命题 不成立 ,以此为出发点,结合 已知条件 ,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件 (或已证明的定理、性质、明显成立的事实等 )矛盾 的结论,以说明假设不正确,从而得出原命题成立,我们把这种证明方法称为反证法 =【 ;精品教育资源文库 】 = 考点 5 放缩法 证明不等式时,通过把不等式中的某些部分的值 放大 或 缩小 ,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法 考点 6 柯西不等式 1二维形式的柯西不等式 定理 1 若 a, b, c, d 都是实 数,则 (a2 b2)(c2 d2)( ac b

3、d)2,当且仅当 ad bc 时,等号成立 2柯西不等式的向量形式 定理 2 设 , 是两个向量,则 | | | |,当且仅当 是零向量,或存在实数 k,使 k 时,等号成立 考点自测 1判断下列结论的正误 (正确的打 “” ,错误的打 “”) (1)用反证法证明命题 “ a, b, c 全为 0” 时,假设为 “ a, b, c 全不为 0” ( ) (2)若 x 2yx y1,则 x 2yx y.( ) (3)|a b| |a b|2 a|.( ) (4)若实数 x、 y 适合不等式 xy1, x y 2,则 x0, y0.( ) 答案 (1) (2) (3) (4) 2 2018 温州模

4、拟 若 a, b, c R, ab,则下列不等式成立的是 ( ) A.1ab2 C. ac2 1 bc2 1 D a|c|b|c| 答案 C 解析 应用排除法取 a 1, b 1,排除 A;取 a 0, b 1,排除 B;取 c 0,排除 D.显然 1c2 10,对不等式 ab 的两边同时乘以 1c2 1,立得 ac2 1 bc2 1成立故选 C. 3 课本改编 不等式: x2 33x; a2 b22( a b 1); ba ab2 ,其中恒成立的是 ( ) A B C D 答案 D 解析 由 得 x2 3 3x ? ?x 32 2 340,所以 x2 33x;对于 ,因为 a2 b2 2(a

5、 b 1) (a 1)2 (b 1)20 ,所以不等式成立;对于 ,因为当 abc b =【 ;精品教育资源文库 】 = C |a|b| |c| D |a|0, b0, a3 b3 2.证明: (1)(a b)(a5 b5)4 ; (2)a b2. 证明 (1)(a b)(a5 b5) a6 ab5 a5b b6 (a3 b3)2 2a3b3 ab(a4 b4) 4 ab(a2 b2)24. (2)因为 (a b)3 a3 3a2b 3ab2 b3 2 3ab(a b) 2 3?a b?24 (a b) 23?a b?34 , 所以 (a b)38 ,因此 a b2. 板块二 典例探究 考向突

6、破 考向 比较法证明不等式 例 1 2016 全国卷 已知函数 f(x) ? ?x 12 ? ?x 12 , M为不等式 f(x) 1,即 1f(a) f( b) 解 (1)当 x 1 时,原不等式可化为 x 11, 综上, M x|x1 (2)证明:证法一:因为 f(ab) |ab 1| |(ab b) (1 b)| ab b| |1 b|b|a 1| |1 b|. 因为 a, b M,所以 |b|1, |a 1|0, 所以 f(ab)|a 1| |1 b|, 即 f(ab)f(a) f( b) 证法二 : 因为 f(a) f( b) |a 1| | b 1| | a 1 ( b 1)| |

7、a b|, 所以要证 f(ab)f(a) f( b), 只需证 |ab 1|a b|, 即证 |ab 1|2|a b|2, =【 ;精品教育资源文库 】 = 即证 a2b2 2ab 1a2 2ab b2, 即证 a2b2 a2 b2 10, 即证 (a2 1)(b2 1)0. 因为 a, b M, 所以 a21, b21, 所以 (a2 1)(b2 1)0 成立 , 所以原不等式成立 考向 用综合法与分析法证明不等式 例 2 (1)2018 浙江金华模拟 已知 x, y R. 若 x, y 满足 |x 3y|be(其中 e 是自然对数的底数 ),求证: baab.(提示:可考虑用分析法找思路

8、) 证明 ba0, ab0, 要证 baab 只要证 aln bbln a 只要证 ln bb ln aa .( abe) 取函数 f(x) ln xx , f( x) 1 ln xx2 令 f( x) 0, x e 当 xe 时, f( x)be 时,有 f(b)f(a), 即 ln bb ln aa ,得证 触类旁通 综合法与分析法的逻辑关系 用综合法证明不等式是 “ 由因导果 ” ,分析法证明不等式是 “ 执果索因 ” ,它们是两种思路截然相反的证明方法综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,

9、互相渗透,互 为前提 【变式训练 2】 (1)设 a, b, c 均为正数,且 a b c 1,证明: =【 ;精品教育资源文库 】 = ab bc ca 13; a2bb2cc2a1. 证明 由 a2 b22 ab, b2 c22 bc, c2 a22 ca 得 a2 b2 c2 ab bc ca. 由题设得 (a b c)2 1, 即 a2 b2 c2 2ab 2bc 2ca 1. 所以 3(ab bc ca)1 , 即 ab bc ca 13. 证法一:因为 a2b b2 a,b2c c2 b,c2a a2 c, 故 a2bb2cc2a (a b c)2( a b c), 即 a2bb2

10、cc2a a b c. 所以 a2bb2cc2a1. 证法二:由柯西不等式得: (a b c)? ?c2aa2bb2c ( c a b)2, a b c 1, c2aa2bb2c1. (2)2015 全国卷 设 a, b, c, d 均为正数,且 a b c d,证明: 若 abcd,则 a b c d; a b c d是 |a b|cd, 得 ( a b)2( c d)2.所以 a b c d. ( )若 |a b|cd. 由 得 a b c d. ( )若 a b c d,则 ( a b)2( c d)2, 即 a b 2 abc d 2 cd. 因为 a b c d,所以 abcd. 于

11、是 (a b)2 (a b)2 4ab c d是 |a b|0, b0,且 a b 1a 1b.证明: (1)a b2 ; (2)a2 a0, b0,得 ab 1. (1)由基本不等式及 ab 1,有 a b2 ab 2,即 a b2 ,当且仅当 a b 1 时等号成立 (2)假设 a2 a0,得 014, (1 b)c14, (1 c)a14. 三式同向相乘,得 (1 a)a(1 b)b(1 c)c164(*) 又 (1 a)a ? ?1 a a2 2 14, 同理 (1 b)b 14, (1 c)c 14. 所以 (1 a)a(1 b)b(1 c)c 164, 与 *式矛盾,即假设不成立,

12、故结论正确 考向 柯西不等式的应用 例 4 柯西不等式是大数学家柯西在研究数学分析中的 “ 流数 ” 问题时得到的,柯西不等式是指:对任意实数 ai, bi(i 1,2, ? , n),有 (a1b1 a2b2 ? anbn)2( a21 a22 ? a2n)(b21 b22 ? b2n),当且仅当 ai kbi(i 1,2, ? , n)时,等号成立 (1)证明:当 n 2 时的柯西不等式; (2)设 a, b, m, n R,且 a2 b2 5, ma nb 5,求 m2 n2的最小值 解 (1)证明:当 n 2 时,柯西不等式的二维形式为: (a21 a22)(b21 b22)( a1b

13、1 a2b2)2,(a21 a22)(b21 b22) (a1b1 a2b2)2 a21b22 a22b21 2a1a2b1b2 (a1b2 a2b1)20 ,当且仅当 a1b2 a2b1时取得等号 (2)由柯西不等式得 (a2 b2)(m2 n2)( ma nb)2,所以 5(m2 n2)5 2即 m2 n25 ,所以m2 n2的最小值为 5. =【 ;精品教育资源文库 】 = 触类旁通 利用柯西不等式解题时,要注意配凑成相应的形式,既可从左向右用,也可从右向左用 【变式训练 4】 2018 皇姑区校级期末 设 xy0,则 ? ?x2 4y2 ? ?y2 1x2 的最小值为 ( ) A 9

14、B 9 C 10 D 0 答案 B 解析 ? ?x2 4y2 ? ?y2 1x2 ? ?x 1x 2y y 2 9.当且仅当 xy 2xy即 xy 2时取等号故选B. 核心规律 1.证明不等式的方法灵活多样,但比较法、综合法、分析法和反证法仍是证明不等式的基本方法要依据题设、题目的结构特点、内在联系,选择恰当的证明方法,要熟悉各种证法中的推理思维方法,并掌握相应的步骤,技巧和语言特点 2.综合法往往是分析法的相反过程,其表述简单、条理清楚当问题比较复杂时,通常把分析法和综合法结合起来使用,以分析法寻找证明的思路,而用综合法叙述、表达整个证明过程 3.不等式证明中的裂项形式: (1) 1n?n 1? 1n 1n 1, 1n?n k? 1k? ?1n 1n k . (2)1k2 aa b c d ba b c d ca b c d da b c d 1, S1, x2x31, x3x11, x1x2 x2x3 x3x11 与 x1x2 x2x3 x3x1 1 矛盾, 至少有一个不大于 1. 3设 x0, y0, M x y2 x y, N x2 x y2 y,则 M、 N 的大小关系为 _ 答案 M x2 x y y2 x y x y2 x y M. 4已知 a, b R, a2 b2 4,则 3a 2b 的取值范围是 _

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|