ImageVerifierCode 换一换
格式:PPT , 页数:14 ,大小:471.50KB ,
文档编号:3499092      下载积分:10 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3499092.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(宜品文库)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学第十二章第八节《一般周期的函数的傅里叶级数》课件.ppt)为本站会员(宜品文库)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学第十二章第八节《一般周期的函数的傅里叶级数》课件.ppt

1、第八节第八节一般周期的函数的傅里叶级数一般周期的函数的傅里叶级数 一、以一、以2 l 为周期的函数的为周期的函数的傅里叶展开傅里叶展开 二、傅里叶级数的复数形式二、傅里叶级数的复数形式一、以一、以2 l 为周期的函数的傅里叶展开为周期的函数的傅里叶展开周期为 2l 函数 f(x)周期为 2 函数 F(z)变量代换lxz将F(z)作傅氏展开 f(x)的傅氏展开式设周期为2l 的周期函数 f(x)满足收敛定理条件,则它的傅里里叶展开式为10sincos2)(nnnlxnblxnaaxf(在 f(x)的连续点处)naxlxnxflbllndsin)(1其中定理定理.l1xlxnxflldcos)()

2、,2,1,0(n),2,1(n说明说明:1)(nnbxf),2,1(dsin)(nxlxnxfbn其中(在 f(x)的连续点处)lxnsinl20l如果 f(x)为偶函数,则有(在 f(x)的连续点处)2)(0axf),2,1,0(dcos)(nxlxnxfan其中1nnalxncos注注:无论哪种情况,).()(21xfxf在 f(x)的间断点 x 处,傅里里叶级数收敛于l20l如果 f(x)为奇函数,则有 例例1.把展开成)20()(xxxf(1)正弦级数;(2)余弦级数.解解:(1)将 f(x)作奇周期延拓,则有2oyx),2,1,0(0nan2022xbnxxnd2sin0222sin

3、22cos2xnnxnxnnncos4),2,1()1(41nnn14)(nxf2sin)1(1xnnn)20(x在 x=2 k 处级数收敛于何值?2oyx(2)将 作偶周期延拓,)(xf),2,1(0nbn2022xanxxnd2cos0222cos22sin2xnnxnxn1)1(422nnxxf)(200d22xxa2kn2,0,)12(822k),2,1(k则有1222)12(cos)12(181kxkk)20(x12 kn说明说明:此式对0 x也成立,8)12(1212kk1222)12(cos)12(181)(kxkkxxf)20(x据此有2oyx利用欧拉公式欧拉公式二、傅里叶级数

4、的复数形式二、傅里叶级数的复数形式设 f(x)是周期为 2 l 的周期函数,则lxnblxnaaxfnnnsincos2)(1021coslxnlxnlxniiee2sinilxnlxnlxniiee1022)(nnaaxflxnlxniiee2nbilxnlxniiee1022nnnbiaa2nnbia lxnielxnie0cncncllxfl)(21llxxfld)(21200ac llxlxnxfldcos)(1212nnnbiacllxlxnxflidsin)(llxlxnilxnxfldsincos)(21llxfl)(21),2,1(dnxlxnie注意到2nnnbacxd同理)

5、,2,1(nlxnie傅里叶级数的复数形式:xexflcTxnillnd)(212Txninnecxf2)(),2,1,0(n因此得式的傅里里叶级数.例例4.把宽为 ,高为 h,周期为 T 的矩形波展成复数形解解:在一个周期,22TT)(tu它的复数形式的傅里里叶系数为 2 2d1thTTh内矩形波的函数表达式为 022d)(1TTttuTc22Toyx22Th22,th2222,0TTtttetuTTtnid)(12 22nc22 2d1tehTTtniTnnhsin),2,1(nThtu)(hTtnineTnn2sin10n),1,0,2(kTkt 2inTThTniTnieeinh21Ttnie222为正弦 级数.内容小结内容小结1.周期为2l 的函数的傅里里叶级数展开公式)(xf20alxnblxnannnsincos1(x 间断点)其中naxlxnxfllldcos)(1nbxlxnxfllldsin)(1),1,0(n),2,1(n当f(x)为奇 函数时,(偶)(余弦)思考与练习思考与练习1.将函数展开为傅里里叶级数时为什么最好先画出其图形?答答:易看出奇偶性及间断点,从而便于计算系数和写出收敛域.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|