1、第八节第八节一般周期的函数的傅里叶级数一般周期的函数的傅里叶级数 一、以一、以2 l 为周期的函数的为周期的函数的傅里叶展开傅里叶展开 二、傅里叶级数的复数形式二、傅里叶级数的复数形式一、以一、以2 l 为周期的函数的傅里叶展开为周期的函数的傅里叶展开周期为 2l 函数 f(x)周期为 2 函数 F(z)变量代换lxz将F(z)作傅氏展开 f(x)的傅氏展开式设周期为2l 的周期函数 f(x)满足收敛定理条件,则它的傅里里叶展开式为10sincos2)(nnnlxnblxnaaxf(在 f(x)的连续点处)naxlxnxflbllndsin)(1其中定理定理.l1xlxnxflldcos)()
2、,2,1,0(n),2,1(n说明说明:1)(nnbxf),2,1(dsin)(nxlxnxfbn其中(在 f(x)的连续点处)lxnsinl20l如果 f(x)为偶函数,则有(在 f(x)的连续点处)2)(0axf),2,1,0(dcos)(nxlxnxfan其中1nnalxncos注注:无论哪种情况,).()(21xfxf在 f(x)的间断点 x 处,傅里里叶级数收敛于l20l如果 f(x)为奇函数,则有 例例1.把展开成)20()(xxxf(1)正弦级数;(2)余弦级数.解解:(1)将 f(x)作奇周期延拓,则有2oyx),2,1,0(0nan2022xbnxxnd2sin0222sin
3、22cos2xnnxnxnnncos4),2,1()1(41nnn14)(nxf2sin)1(1xnnn)20(x在 x=2 k 处级数收敛于何值?2oyx(2)将 作偶周期延拓,)(xf),2,1(0nbn2022xanxxnd2cos0222cos22sin2xnnxnxn1)1(422nnxxf)(200d22xxa2kn2,0,)12(822k),2,1(k则有1222)12(cos)12(181kxkk)20(x12 kn说明说明:此式对0 x也成立,8)12(1212kk1222)12(cos)12(181)(kxkkxxf)20(x据此有2oyx利用欧拉公式欧拉公式二、傅里叶级数
4、的复数形式二、傅里叶级数的复数形式设 f(x)是周期为 2 l 的周期函数,则lxnblxnaaxfnnnsincos2)(1021coslxnlxnlxniiee2sinilxnlxnlxniiee1022)(nnaaxflxnlxniiee2nbilxnlxniiee1022nnnbiaa2nnbia lxnielxnie0cncncllxfl)(21llxxfld)(21200ac llxlxnxfldcos)(1212nnnbiacllxlxnxflidsin)(llxlxnilxnxfldsincos)(21llxfl)(21),2,1(dnxlxnie注意到2nnnbacxd同理)
5、,2,1(nlxnie傅里叶级数的复数形式:xexflcTxnillnd)(212Txninnecxf2)(),2,1,0(n因此得式的傅里里叶级数.例例4.把宽为 ,高为 h,周期为 T 的矩形波展成复数形解解:在一个周期,22TT)(tu它的复数形式的傅里里叶系数为 2 2d1thTTh内矩形波的函数表达式为 022d)(1TTttuTc22Toyx22Th22,th2222,0TTtttetuTTtnid)(12 22nc22 2d1tehTTtniTnnhsin),2,1(nThtu)(hTtnineTnn2sin10n),1,0,2(kTkt 2inTThTniTnieeinh21Ttnie222为正弦 级数.内容小结内容小结1.周期为2l 的函数的傅里里叶级数展开公式)(xf20alxnblxnannnsincos1(x 间断点)其中naxlxnxfllldcos)(1nbxlxnxfllldsin)(1),1,0(n),2,1(n当f(x)为奇 函数时,(偶)(余弦)思考与练习思考与练习1.将函数展开为傅里里叶级数时为什么最好先画出其图形?答答:易看出奇偶性及间断点,从而便于计算系数和写出收敛域.