ImageVerifierCode 换一换
格式:PPT , 页数:17 ,大小:896KB ,
文档编号:3499102      下载积分:10 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3499102.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(宜品文库)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学第十一章第六节《高斯公式通量与散度》课件.ppt)为本站会员(宜品文库)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学第十一章第六节《高斯公式通量与散度》课件.ppt

1、第六节Green 公式Gauss 公式推广推广一、高斯公式一、高斯公式*二、沿任意闭曲面的曲面积分为零的条件二、沿任意闭曲面的曲面积分为零的条件 三、通量与散度三、通量与散度 高斯公式 通量与散度一、高斯一、高斯(Gauss)公式公式定理定理1.设空间闭区域 由分片光滑的闭曲 上有连续的一阶偏导数,zyxzRyQxPdddyxRxzQzyPdddddd zyxzRdddyxRdd 下面先证:函数 P,Q,R 在面 所围成,的方向取外侧,则有(Gauss 公式公式)231zyxyxD),(yxRyxyxRdd),(,),(:11yxzz 证明证明:设yxDyxyxzyxzyxz),(,),(),

2、(),(:21,321zzRyxzyxzd),(),(21yxD),(2yxz),(1yxzyxRdd yxD2 zyxzRdddyxdd1 3yxRdd为XY型区域,),(:22yxzz 则yxyxRdd),(yxDyxD),(2yxzyxyxRdd),(),(1yxz所以zyxzRdddyxRdd 若 不是 XY型区域,则可引进辅助面将其分割成若干个 XY型区域,故上式仍成立.正反两侧面积分正负抵消,在辅助面类似可证 zyxyQdddyxRxzQzyPdddddd zyxzRyQxPdddxzQdd zyxxPdddzyPdd 三式相加,即得所证 Gauss 公式:例例1.用Gauss 公

3、式计算zyxzyyxyxdd)(dd)(其中 为柱面122 yx闭域 的整个边界曲面的外侧.解解:这里利用Gauss 公式,得原式=zyxzyddd)(zrrzrddd)sin(用柱坐标)zzrrrd)sin(dd30102029x3oz1y,)(xzyP,0QyxR及平面 z=0,z=3 所围空间思考思考:若 改为内侧,结果有何变化?若 为圆柱侧面(取外侧),如何计算?例例2.利用Gauss 公式计算积分SzyxId)coscoscos(222其中 为锥面222zyxhozyx解解:作辅助面,:1hz,:),(222hyxDyxyx取上侧1(I1Szyxd)coscoscos)(2220,2

4、1上在介于 z=0 及 z=h 之间部分的下侧.1,记h1所围区域为,则 zyxzyxddd)(2yxhyxDdd2zyxzyxIddd)(2yxhyxDdd2421hhozyxh1例例3.dddddd)(2223yxzxxzyzxzyxzxI设 为曲面21,222zyxz取上侧,求 解解:作取下侧的辅助面1:1z1:),(22yxDyxyxI11zyxdddyxxdd)(2xyD)1(20d10drr221drz202dcos103drr41zoxy211用柱坐标用柱坐标用极坐标用极坐标三、通量与散度三、通量与散度引例引例.设稳定流动的不可压缩流体的密度为1,速度场为kzyxRjzyxQiz

5、yxPzyxv),(),(),(),(理意义可知,设 为场中任一有向曲面,yxRxzQzyPdddddd单位时间通过曲面 的流量为 则由对坐标的曲面积分的物 由两类曲面积分的关系,流量还可表示为SRQPdcoscoscosSnvd若 为方向向外的闭曲面,yxRxzQzyPdddddd当 0 时,说明流入 的流体质量少于 当 0 时,说明流入 的流体质量多于流出的,则单位时间通过 的流量为 当=0 时,说明流入与流出 的流体质量相等.n流出的,表明 内有泉;表明 内有洞;根据高斯公式,流量也可表为zyxzRyQxPdddn方向向外的任一闭曲面,记 所围域为,设 是包含点 M 且为了揭示场内任意点

6、M 处的特性,M在式两边同除以 的体积 V,并令 以任意方式缩小至点 M 则有),(M记作VMlimzyxzRyQxPVMddd1lim),(limzRyQxPMMzRyQxP此式反应了流速场在点M 的特点:其值为正,负或 0,分别反映在该点有流体涌出,吸入,或没有任何变化.),(定义定义:设有向量场kzyxRjzyxQizyxPzyxA),(),(),(),(其中P,Q,R 具有连续一阶偏导数,是场内的一片有向 则称曲面,其单位法向量 n,SnAd为向量场 A 通过有向曲面 的通量(流量).在场中点 M(x,y,z)处 称为向量场 A 在点 M 的散度.记作AdivzRyQxP0divA表明

7、该点处有正源,0divA表明该点处有负源,0divA表明该点处无源,散度绝对值的大小反映了源的强度.0divA若向量场 A 处处有,则称 A 为无源场.例如例如,匀速场),(),(为常数其中zyxzyxvvvvvvv 0divv故它是无源场.说明说明:由引例可知,散度是通量对体积的变化率,且内容小结内容小结1.高斯公式及其应用公式:yxRxzQzyPddddddzyxzRyQxPddd应用:计算曲面积分(非闭曲面时注意添加辅助面的技巧)2.通量与散度 设向量场P,Q,R,在域G内有一阶 连续 偏导数,则 向量场通过有向曲面 的通量为 G 内任意点处的散度为),(RQPA SnAdzRyQxPA

8、div思考与练习思考与练习,:2222取外侧设Rzyx所围立体,222zyxr判断下列演算是否正确?yxrzxzryzyrxdddddd333333vRd324 R31Ryxzxzyzyxdddddd33331Rvzyxd)(3222 为高斯高斯(1777 1855)德国数学家、天文学家和物理学家,是与阿基米德,牛顿并列的伟大数学家,他的数学成就遍及各个领域,在数论、级数、复变函数及椭圆函数论等方面均有一系列开创性的贡献,他还十分重视数学的应用,地测量学和磁学的研究中发明和发展了最小二乘法、曲面论和位势论等.他在学术上十分谨慎,原则:代数、非欧几何、微分几何、超几何 在对天文学、大恪守这样的“问题在思想上没有弄通之前决不动笔”.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|