ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:851.50KB ,
文档编号:3499131      下载积分:10 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3499131.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(宜品文库)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高等数学第十二章第四节《函数展开成幂级数》课件.ppt)为本站会员(宜品文库)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高等数学第十二章第四节《函数展开成幂级数》课件.ppt

1、第四节两类问题:在收敛域内和函数)(xSnnnxa0幂级数求 和展 开本节内容本节内容:一、泰勒一、泰勒(Taylor)级数级数 二、函数展开成幂级数二、函数展开成幂级数 函数展开成幂级数 一、泰勒一、泰勒(Taylor)级数级数 )()(0 xfxf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn其中)(xRn(在 x 与 x0 之间)称为拉格朗日余项拉格朗日余项.10)1()(!)1()(nnxxnf则在若函数0)(xxf在的某邻域内具有 n+1 阶导数,此式称为 f(x)的 n 阶泰勒公式阶泰勒公式,该邻域内有:)(0 xf)(00 xxxf200

2、)(!2)(xxxf nnxxnxf)(!)(00)(为f(x)的泰勒级数泰勒级数.则称当x0=0 时,泰勒级数又称为麦克劳林级数麦克劳林级数.1)对此级数,它的收敛域是什么?2)在收敛域上,和函数是否为 f(x)?待解决的问题:若函数的某邻域内具有任意阶导数,0)(xxf在定理定理1.各阶导数,)(0 x则 f(x)在该邻域内能展开成泰勒级数的充要条件是 f(x)的泰勒公式中的余项满足:.0)(limxRnn设函数 f(x)在点 x0 的某一邻域 内具有定理定理2.若 f(x)能展成 x 的幂级数,则这种展开式是唯一的,且与它的麦克劳林级数相同.二、函数展开成幂级数二、函数展开成幂级数 1.

3、直接展开法直接展开法由泰勒级数理论可知,展开成幂级数的步函数)(xf第一步 求函数及其各阶导数在 x=0 处的值;第二步 写出麦克劳林级数,并求出其收敛半径 R;第三步 判别在收敛区间(R,R)内)(limxRnn是否为骤如下:展开方法展开方法直接展开法 利用泰勒公式间接展开法 利用已知其级数展开式0.的函数展开例例1.将函数xexf)(展开成 x 的幂级数.解解:,)()(xnexf),1,0(1)0()(nfn1其收敛半径为 对任何有限数 x,其余项满足 )(xRne!)1(n1nxxe!)1(1nxn故,!1!31!21132nxxnxxxenRlim!1n!)1(1nn0),(x(在0

4、与x 之间)x2!21x3!31xnxn!1故得级数 例例2.将xxfsin)(展开成 x 的幂级数.解解:)()(xfn)0()(nf得级数:x)sin(2 nx其收敛半径为,R对任何有限数 x,其余项满足 )(xRn)1(sin(2 n!)1(n1nx!)1(1nxn12kn),2,1,0(k3!31x5!51x12!)12(11)1(nnnx),(xxsinn0kn2,)1(k,012!)12(115!513!31)1(nnnxxxxnnxnxxx2142!)2(1)1(!41!211cos类似可推出:),(x),(x12153!)12(1)1(!51!31sinnnxnxxxx例例3.

5、将函数mxxf)1()(展开成 x 的幂级数,其中m为任意常数.解解:易求出,1)0(f,)0(mf,)1()0(mmf,)1()2)(1()0()(nmmmmfn于是得 级数 mx12!2)1(xmm由于1limnnnaaRnmnn1lim1nxnnmmm!)1()1(级数在开区间(1,1)内收敛.因此对任意常数 m,2!2)1(xmmnxnnmmm!)1()1(xmxm1)1()11(x称为二项展开式二项展开式.说明:说明:(1)在 x1 处的收敛性与 m 有关.(2)当 m 为正整数时,级数为 x 的 m 次多项式,上式 就是代数学中的二项式定理二项式定理.由此得 对应1,2121m的二

6、项展开式分别为xx21112421x364231x)11(x48642531x111 x24231x3642531x)11(x486427531xx21111 x2x3x)11(xnnx)1(x)11(1112xxxxxn2.间接展开法间接展开法211x x11利用一些已知的函数展开式及幂级数的运算性质,例例4.将函数展开成 x 的幂级数.解解:因为nnxxx)1(12)11(x把 x 换成2x211xnnxxx242)1(1)11(x,得将所给函数展开成 幂级数.例例5.将函数)1ln()(xxf展开成 x 的幂级数.解解:xxf11)()11()1(0 xxnnn从 0 到 x 积分,得x

7、xxxnnnd)1()1ln(00,1)1(01nnnxn定义且连续,区间为.11x利用此题可得11)1(41312112lnnn11x11x上式右端的幂级数在 x 1 收敛,有在而1)1ln(xx所以展开式对 x 1 也是成立的,于是收敛例例6.将xsin展成4x解解:)(sinsin44xx)sin(cos)cos(sin4444xx)sin()cos(4421xx2132)4(!31)4(!21)4(121xxx)(x的幂级数.2)4(!21x4)4(!41x1)4(x3)4(!31x5)4(!51x例例7.将3412 xx展成 x1 的幂级数.解解:)3)(1(13412xxxx)3(

8、21)1(21xx 14121x 4121x222)1(xnnnx2)1()1(81141x224)1(xnnnx4)1()1(nnnnnx)1(2121)1(3220)31(x)21(x 18141x1内容小结内容小结1.函数的幂级数展开法(1)直接展开法 利用泰勒公式;(2)间接展开法 利用幂级数的性质及已知展开2.常用函数的幂级数展开式xe1),(x)1(lnxx1,1(xx2!21x,!1nxn221x331x441x11)1(nnxn式的函数.!)12()1(12nxnnxsinx!33x!55x!77xxcos1!22x!44x!66x!)2()1(2nxnnmx)1(1xm2!2

9、)1(xmmnxnnmmm!)1()1(当 m=1 时x11,)1(132nnxxxx),(x),(x)1,1(x)1,1(x思考与练习思考与练习1.函数0)(xxf在处“有泰勒级数”与“能展成泰勒级数”有何不同?提示提示:后者必需证明,0)(limxRnn前者无此要求.2.如何求xy2sin的幂级数?提示提示:xy2cos21210!)2(1)1(2121nnn,!)2(4)1(2121nnnnxn),(xnx2)2()(xFm2!2)2)(1(111)(xmmxmmxF)()1(xFx211)(xmxmxFx1mxm2!2)1(xmmnxnnmmm!)1()1(nxnnmm!)()1(nx

10、nnmm!)1()1()1(例例3 附注附注Ex:1.将下列函数展开成 x 的幂级数xxxf11arctan)(解解:)(xf211x,)1(02nnnx)1,1(x)0()(fxf002d)1(nxnnxx01212)1(nnnxnx1 时,此级数条件收敛,4)0(f,12)1(4)(012nnnxnxf1,1x因此)1(lnxx1,1(x221x331x441x11)1(nnxn2.将在x=0处展为幂级数.)32ln()(2xxxf解解:)1ln(2ln)1ln()(23xxxf)1ln(x)32)(1(322xxxx1nnnx)11(x)1ln(23xnnnxn)(23)1(11)(3232xnnnxn)(1 12ln231)(3232x因此2ln)(xf1nnnxnnnxn)()1(2311

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|