ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:188.50KB ,
文档编号:3553374      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3553374.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(Q123)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2022新人教A版(2019)《高中数学》必修第一册第四章 指数函数与对数函数 解答题专题练习.doc)为本站会员(Q123)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2022新人教A版(2019)《高中数学》必修第一册第四章 指数函数与对数函数 解答题专题练习.doc

1、高一数学上册第四章指数函数与对数函数专题练习(解答题)1已知对数函数f(x)logax(a0,a1)的图象经过点(3,1)(1)求函数f(x)的解析式;(2)如果不等式f(x+1)1成立,求实数x的取值范围2已知函数f(x)loga(2+x)loga(2x),(a0且a1)(1)求函数f(x)的定义域;(2)求满足f(x)0的实数x的取值范围3已知函数()解方程f(x)4;()求满足f(x)0的x的取值范围4已知函数f(x)loga(a0,a1,b0)(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由;(3)求f(x)的反函数f1(x)的解析式5已知函数f(x)2x1的反

2、函数是yf1(x),g(x)log4(3x+1)(1)画出f(x)2x1的图象;(2)解方程f1(x)g(x)6已知函数f(x)loga(x1)+2(a0且a0)且过点(3,3)(1)求实数a的值;(2)求函数f(x)的零点7已知函数f(x)3xa3x,其中a为实常数;(1)若f(0)7,解关于x的方程f(x)5;(2)判断函数f(x)的奇偶性,并说明理由8设函数f(x)lg(|x+1|+|xa|2)(aR)(1)当a2时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,求实数a的取值范围9已知yf(x)是定义域为R的奇函数,当x0,+)时,f(x)x22x(1)写出函数yf(x)的

3、解析式;(2)若方程f(x)a恰有3个不同的解,求a的取值范围10已知f(x)是定义在R上的奇函数,且x0时,f(x)(x+1)(1)求f(0),f(1);(2)求函数f(x)的解析式;(3)若f(a1)1,求实数a的取值范围11已知集合Ax|2x25x+20,函数反函数的定义域为B(1)若a1,求AB;(2)若AB,求实数a的取值范围;(3)若方程log2(ax23x+3)2在A内有解,求实数a的取值范围12已知函数f(x)log3(9x+1)kx是偶函数(1)求实数k的值;(2)当x0时,函数g(x)f(x)xa存在零点,求实数a的取值范围;(3)设函数h(x)log3(m3x2m),若函

4、数f(x)与h(x)的图象只有一个公共点,求实数m的取值范围13已知aR,当x0时,f(x)log2(+a)(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;(2)若函数g(x)f(x)+2log2x只有一个零点,求实数a的范围;(3)设a0,若对任意实数t,1,函数f(x)在t,t+1上的最大值与最小值的差不大于1,求实数a的取值范围14甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1x10),每小时可获得的利润是100(5x+1)元(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生

5、产速度?并求此最大利润15为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)(0x10),若不建隔热层,每年能源消耗费用为8万元设f(x)为隔热层建造费用与20年的能源消耗费用之和()求k的值及f(x)的表达式()隔热层修建多厚时,总费用f(x)达到最小,并求最小值16某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)x2+10x(万元);当年产量不小于80千

6、件时,C(x)51x+1450(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?17某地区上年度电价为0.8元/kWh,年用电量为akWh,本年度计划将电价降到0.55元/kWh至0.75元/kWh之间,而用户期望电价为0.4元/kWh经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为K)该地区电力的成本为0.3元/kWh(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k0.2a,当电价最低

7、定为多少时仍可保证电力部门的收益比上年至少增长20%?(注:收益实际用电量(实际电价成本价)参考答案1解:(1)因为loga31,所以a3,所以f(x)log3x,(2)因为f(x+1)1,也就是log3(x+1)1,所以log3(x+1)log33,所以0x+13,所以1x2,所以实数x的取值范围是x|1x22解:由题意可得,解可得,2x2,函数f(x)的定义域为(2,2),(2)由f(x)loga(2+x)loga(2x)0,可得loga(2+x)loga(2x),a1时,02+x2x,解可得,2x0,0a1时,02x2+x,解可得,0x23解:()函数,因为f(x)4,所以当x1时,f(

8、x)21x4,解可得x1,当x1时,f(x)1log2x4,解可得x,舍去;故x1;()若f(x)0,当x1时,f(x)0即21x0恒成立,此时有x1,当x1时,f(x)0即1log2x0,变形可得log2x1,解得0x2,又由x1,则有1x2;综上,x的取值范围为(,24解:(1)由0,化为:(xb)(x+b)0b0时,解得xb或xb;b0时,解得xb或xb函数f(x)的定义域为:b0时,x(,b)(b,+)b0时,x(,b)(b,+)(2)定义域关于原点对称,f(x)logaf(x),函数f(x)为奇函数(3)由yloga,化为:ay,解得xb把x与y互换可得:ybf(x)的反函数f1(x

9、)b(x0)5解:(1)如图所示,(2)由y2x1,解得:xlog2(y+1),把x与y互换可得:ylog2(x+1),f(x)的反函数是yf1(x)log2(x+1)(x1)方程f1(x)g(x)即log2(x+1)log4(3x+1)(x+1)23x+10,解得:x0或16解:(1)由题设条件可知,f(3)loga(31)+23loga21,a2(2)令f(x)log2(x1)+20,则log2(x1)2log2,而ylog2x在(0,+)上单调递增,则x1,解得x所以函数f(x)的零点为7解:(1)由f(0)7,即1a7,可得a6,那么3x+63x5,(3x2)(3x3)0,解得x1或x

10、log32(2)由f(x)a3x+3x,当a1时,可得f(x)f(x)此时f(x)是偶函数,当a1时,f(x)f(x)此时f(x)是奇函数,当a1时,f(x)是非奇非偶函数8解:(1)当a2 时,f(x)lg(|x+1|+|x+2|2),若函数f(x)有意义,则|x+1|+|x+2|20,即|x+1|+|x+2|2,或,或 ,解求得 x,解求得x,解求得x,故函数的定义域为(,)、(,+)(2)若函数f(x)的定义域为R,则|x+1|+|xa|20恒成立由于|x+1|+|xa|(x+1)(xa)|a+1|,|a+1|2,解得 a1,或a39解:(1)设x(,0),则x(0,+),由x0,+)时

11、,f(x)x22x,且yf(x)是定义域为R的奇函数,得f(x)f(x)(x)22(x)x22x,f(x);(2)画出函数f(x)的图象如图:由图可知,要使方程f(x)a恰有3个不同的解,则a的取值范围为(1,1)10解:(I)分别令x0,1即可得出f(0)0,f(1)f(1)1;(II)令x0,则x0,f(x)f(x)x0时,f(x)()f(x)在(,0上为增函数,f(x)在R上为增函数f(a1)1f(1)a11,a2a的取值范围是(,2)11解:(1)Ax|2x25x+20,2,当a1时,y2(x23x+3),由yx23x+3,故y2(x23x+3),故函数y2(x23x+3)的反函数的定

12、义域即函数的值域B(0,AB,2(2)因为函数反函数的定义域为B所以函数的值域为B又因为A,2,AB,所以y,2,使得所以存在x使得,22,所以存在x使得,1ax23x+31,即存在x使得,ax23x+40且ax23x+20,令f(x)ax23x+4,g(x)ax23x+2,当a0时,x且x,符合题意,当a0时,f(x)ax23x+4,符合存在x使得,ax23x+40,g(x)ax23x+2,当(3)24a298a0时符合题意,即0a,当a0时,f(x)ax23x+4,当(3)24a40时,符合题意,即a,g(x)ax23x+2,符合存在x使得,ax23x+20,所以a0,综上所述,a的取值范

13、围为(,(3)根据题若方程log2(ax23x+3)2在,2内有解所以存在x,2,使得ax23x+30且ax23x10在,2内有解,即存在x,2,使得a且a在,2内有解,令p(x),q(x),p(x),当x,2,p(x)0,p(x)单调递增,所以p()6,p(2),所以a6,q(x),当x,2,q(x)0,q(x)单调递减,q()10,q(2)所以a10,综上,a的取值范围为,1012解:(1)由f(x)log3(9x+1)kx是偶函数则f(x)f(x)恒成立,则2(k1)x0恒成立,即k1;(2)当x0时,g(x)f(x)xa存在零点,即alog3(9x+1)2x在x0,+)有解,设(x)l

14、og3(9x+1)2x (x0),(x)log3(+1),因为x0,所以+1(1,2,所以(x)(0,log32,即实数a的取值范围为:(0,log32,(3)函数f(x)与h(x)的图象只有一个公共点,则关于x的方程log3(m3x2m)log3(9x+1)x只有一个解,所以m3x2m3x+3x,令t3x(t0),得(m1)t22mt10,当m10,即m1时,此方程的解为t,不满足题意,当m10,即m1时,由韦达定理可知,此方程有一正一负根,故满足题意,当m10,即m1时,由方程(m1)t22mt10只有一正根,则需,解得m,综合得,实数m的取值范围为:(1,+)13解:(1)aR,当x0时

15、,f(x)log2(+a)函数f(x)过点(1,1),f(1)log2(1+a)1,解得a1,此时函数f(x)log2(+1)(x0)(2)g(x)f(x)+2log2x+2log2xlog2(x+ax2),函数g(x)f(x)+2log2x只有一个零点,g(x)f(x)+2log2xlog2(x+ax2)0(+a)x21化为ax2+x10h(x)ax2+x1在(0,+)上只有一个解,当a0时,h(x)x1,只有一个零点,可得x1;当a0时,h(x)ax2+x1在(0,+)上只有一个零点,当a0时,成立;当a0时,令1+4a0解得a,可得x2综上可得,a0或a(3)f(x),f(x),当x0时

16、,f(x)0,f(x)在t,t+1上的最大值与最小值分别是f(t)与f(t+1),由题意,得f(t)f(t+1)1,2,整理,得a,设Q(t),Q(t),当t,1时,Q(t)0,则aQ(t),aQ(),解得a实数a的取值范围是,+)14解:(1)生产该产品2小时获得的利润为100(5x+1)2200(5x+1)根据题意,200(5x+1)3000,即5x214x30x3或x1x10,3x10;(2)设利润为 y元,则生产900千克该产品获得的利润为y100(5x+1)90000()9104+1x10,x6时,取得最大利润为457500元故甲厂应以6千克/小时的速度生产,可获得最大利润为4575

17、00元15解:()设隔热层厚度为xcm,由题设,每年能源消耗费用为再由C(0)8,得k40,因此而建造费用为C1(x)6x,最后得隔热层建造费用与20年的能源消耗费用之和为()方法一:,令f(x)0,即解得x5,(舍去)当0x5时,f(x)0,当5x10时,f(x)0,故x5是f(x)的最小值点,对应的最小值为当隔热层修建5cm厚时,总费用达到最小值为70万元方法二:由()知,f(x),所以f(x)1070,当且仅当,即x5时取等号,所以当隔热层修建5cm厚时,总费用达到最小值为70万元16解:(1)每件商品售价为0.05万元,x千件商品销售额为0.051000x万元,当0x80时,根据年利润

18、销售收入成本,L(x)(0.051000x)x210x250x2+40x250;当x80时,根据年利润销售收入成本,L(x)(0.051000x)51x+14502501200(x+)综合可得,L(x);(2)当0x80时,L(x)x2+40x250(x60)2+950,当x60时,L(x)取得最大值L(60)950万元;当x80时,L(x)1200(x+)1200212002001000,当且仅当x,即x100时,L(x)取得最大值L(100)1000万元综合,由于9501000,年产量为100千件时,该厂在这一商品的生产中所获利润最大17解:(1)设下调后的电价为x元/kwh,依题意知用电量增至,电力部门的收益为(5分)(2)依题意有(9分)整理得解此不等式得0.60x0.75答:当电价最低定为0.6元/kwh仍可保证电力部门的收益比上年至少增长20%

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|