ImageVerifierCode 换一换
格式:PPTX , 页数:24 ,大小:1.72MB ,
文档编号:3556654      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3556654.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(Q123)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(5.3诱导公式(第二课时)ppt课件-2022新人教A版(2019)《高中数学》必修第一册.pptx)为本站会员(Q123)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

5.3诱导公式(第二课时)ppt课件-2022新人教A版(2019)《高中数学》必修第一册.pptx

1、 三角函数的诱导公式三角函数的诱导公式第二课时第二课时 第五章 三角函数复习引入公式一:公式一:tan)2tan(cos)2cos(sin)2sin(kkk 公式二:公式二:tan)tan(cos)cos(sin)sin(诱导公式一四“函数名不变,符号看象限.”终边相同的角的同一三角函数值相等关于原点对称角+与的终边 公式三:公式三:tan)tan(cos)cos(sin)sin(公式四:公式四:tan)tan(cos)cos(sin)sin(“函数名不变,符号看象限.”角 与的终边关于x轴对称将负角转化成正角求值角 与的终边关于y轴对称【总结】对于公式一四的概括:【2】对于正弦与余弦的诱导公

2、式,可以为任意角;对于正切的诱导公式,的终边不能落在y轴上,即【3】诱导公式即可以用弧度制表示,也可以用角度制 表示.思考1:知识探究)32sin(3sin与与的值相等吗?的值相等吗?的值分别有什么关系?角的终边有什么关系?据此,你有什么猜想?)32sin(与与与与思考思考2 2:3cos)62cos(6sin,P P1 1Oxy2(y1,x1)P P1 1Oxy2(y1,x1)从而得:公式五“函数名改变,符号看象限.”的终边的终边P P1 1Oxy的终边的终边2(y1,x1)从而得:公式六“函数名改变,符号看象限.”的终边的终边Oxy的终边的终边2(y1,x1)“函数名改变,符号看象限.”的

3、终边的终边Oxy的终边的终边2(y1,x1)“函数名改变,符号看象限.”例3 3 证明:(1 1)证明:左边)证明:左边sin)23cos(2cos)23sin(1)()()23sin()2(sin)2sin(cos右边sin)23cos(2)(证明:左边=)2(cos)2cos(sin右边sin)23cos(2cos)23sin(1)()(公式五,六总结总结公式五、六作用:实现正弦和余弦之间的相互转化诱导公式总结:一六【1】诱导公式都是的三角函数与 的三角函数之间的转化,记忆口诀是:奇变偶不变,符号看象限【2】“奇变偶不变”:角前面的是 ,如果 是 的奇数倍,那么得到的 三角函数名要发生变化

4、,即正弦变余弦,余弦变正弦;如果 是 的偶数倍,那么得到的三角函数名不变化【3】“符号看象限”:将角看成一个锐角(为了判断符号,实际可以不是锐角),此时判断 所在的象限,并观察原三角函数对这个角运算得到的符号 是正还是负.【4】这些规律对任何三角函数(只要存在,有意义)都成立例4 4:化简:)29)sin(-)sin(-)sin(3-cos()-211)cos(2)cos()cos(-sin(2解:)2sin(sin)cos(cos)2cos(sin)211cos()2(6cos)2(cossin化简思想:化简思想:化负正;化负正;大化小;大化小;小化锐;小化锐;锐求值)29)sin(-)si

5、n(-)sin(3-cos()-211)cos(2)cos()cos(-sin(2)cos()3sin()sin()29sin(cossinsincoscossinsin)cos()sin)(sin)(cos)(sin(原式tan【分析】注意到(53-)+(37+)=90,如果设=53-,=37+,那 么+=90,所以可以利用诱导公式.例5 已知 ,且 ,求 的值.解:设=53-,=37+,则+=90,=90-.所以sin=sin(90-)=cos因为-270-90,所以143323由 ,得143180所以 所以作业:微讲小本第二课时 诱导公式五、六感谢各位老师莅临现场,请各位老师指导与批评!

6、本课时完!诱导公式五六【总结1】公式五和公式六可以概括如下:的正弦(余弦)函数值,分别等于角的余弦(正弦)函数值,前面 加上一个把看成锐角时原函数值的符号.简记为:“函数名改变,符号看象限”【总结2】六组诱导公式各有什么用?公式一:将任意角转化成02之间的角求值公式二:将02之间的角转化成0之间的角求值公式三:将负角转化成正角求值公式四:将 之间的角转化成 之间的角求值公式五、六:实现正弦和余弦之间的相互转化六组诱导公式的横向对比诱导公式总结:【1】诱导公式都是的三角函数与 的三角函数之间的转化,记忆口诀是:奇变偶不变,符号看象限【2】“奇变偶不变”:角前面的是 ,如果 是 的奇数倍,那么得到的 三角函数名要发生变化,即正弦变余弦,余弦变正弦;如果 是 的偶数倍,那么得到的三角函数名不变化【3】“符号看象限”:将角看成一个锐角(为了判断符号,实际可以不是锐角),此时判断 所在的象限,并观察原三角函数对这个角运算得到的符号 是正还是负.【4】这些规律对任何三角函数(只要存在,有意义)都成立2.看成锐角,原函数值的符号看成锐角,原函数值的符号诱导公式记忆口诀:诱导公式记忆口诀:奇变偶不变奇变偶不变符号看象限符号看象限

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|