1、 1 1.2.1有理数 学校: _姓名: _班级: _ 一选择题(共 15小题) 1下列四个数中,是正整数的是( ) A 1 B 0 C D 1 2最小的正整数是( ) A 0 B 1 C 1 D不存在 3下列说法正确的是( ) A一个数前面加上 “ ” 号,这个数就是负数 B零既是正数也是负数 C若 a 是正数,则 a不一定是负数 D零既不是正数也不是负数 4最小的正有理数是( ) A 0 B 1 C 1 D不存在 5在 0, 2.1, 4, 3.2 这四个数中,是负分数的是( ) A 0 B 2.1 C 4 D 3.2 6在下列各数: , +1, 6.7,( 3), 0, , 5, 25%
2、 中,属于整数的有( ) A 2个 B 3个 C 4个 D 5个 7如果一对有理数 a, b使等式 a b=a?b+1成立,那么这对有理数 a, b叫做 “ 共生有理数对 ” ,记为( a, b),根据上述定义,下列四对有理数中不是 “ 共生有理数对 ” 的是( ) A( 3, ) B( 2, ) C( 5, ) D( 2, ) 8如果 m是一个有理数,那么 m是 ( ) A正数 B 0 C负数 D以上三者情况都有可能 9下列说法正确的是( ) A非负数包括零和整数 B正整数包括自然数和零 C零是最小的整数 D整数和分数统称为有理数 10下列说法不正确的是( ) A 0既不是正数,也不是负数
3、B 0的绝对值是 0 C一个有理数不是整数就是分数 D 1是绝对值最小的正数 11在 , 2, 0.3, , 0.1010010001这五个数中,有理数的个数有( ) A 1个 B 2个 C 3个 D 4个 12下列说法中正确的是( ) A整数只包 括正整数和负整数 B 0既是正数也是负数 C没有最小的有理数 D 1是最大的负有理数 13下列说法正确的是( ) A整数可分为正整数和负整数 B分数可分为正分数和负分数 C 0不属于整数也不属于分数 D一个数不是正数就是负数 14下列语句正确的是( ) A一个有理数不是正数就是负数 B一个有理数不是整数就是分数 C有理数就是正有理数、负有理数、整数
4、、分数和零的统称 D有理数是自然数和负数的统称 15下列说法中,正确的是( ) A 0是最小的有理数 B 0是最小的整数 C 0的倒 数和相反数都是 0 D 0是最小的非负数 二填空题(共 10小题) 16在数 1, 2, 3, 4, 5, 6, 7, 8前添加 “ +” 或 “ ” 并依次计算,所得结果可能的最小非负2 数是 17在有理数 0.2, 0, , 5中,整数有 18在 “1 , 0.3, + , 0, 3.3” 这五个数中,非负有理数是 (写出所有符合题意的数) 19我们把分子为 1 的分数叫做单位分数,如 , , ? ,任何一个单位分数都可以拆分成两个不同的单位分数的和,如 =
5、 + , = + , = + , ? ,请你根据对 上述式子的观察,把 表示为两个单位分数之和应为 20设三个互不相等的有理数,既可分别表示为 1、 a+b、 a 的形式,又可分别表示为 0、 、 b的形式,则 a2018+b2017= 21下列各数: 5, 0.5, 0, 3.5, 12 , 10%, 7中,属于整数的有 ,属于分数的有 ,属于负数的有 22将 1, 2, ? , 9这九个数字填在如图的九个空格中,要求每一行从左到右、每一列从到下分别依次增大, 3, 4固定在图中的位置时,填写空格的方法数有 种 23观 察下面一列数: 1, 2, 3, 4, 5, 6, 7, ? 将这列数排
6、成下列形式: 按照上述规律排下去,那么第 10 行从左边数第 9 个数是 ;数 201 是第 行从左边数第 个数 24用 “ 有 ” 、 “ 没有 ” 填空: 在有理数集合里, 最大的负数, 最小的正数, 绝对值最小的有理数 25写出一个是分数但不是正数的数 三解答题(共 3小题) 26把下列各数分类 3, 0.45, , 0, 9, 1, 1 , 10, 3.14 ( 1)正整数: ? ( 2)负整数: ? ( 3)整数: ? ( 4)分数: ? 27把下列各数写到相应的集合中: 3, 2, , l.2, 0, , 13, 4 整数集合: ? 分数集合: ? 负有理数集合: ? 非负整数集合
7、: ? 负分数集合: ? 28观察下列两个等式: 2 =2 +1, 5 =5 +1,给出定义如下:我们称使等式 a b=ab+1的成立的一对有理数 a, b为 “ 共生有理数对 ” ,记为( a, b),如:数对( 2, ),( 5, ),都是 “ 共生有理数对 ” ( 1)数对( 2, 1),( 3, )中是 “ 共生有理数对 ” 的是 ; ( 2)若( m, n)是 “ 共生有理数对 ” ,则( n, m) “ 共生有理数对 ” (填 “ 是 ” 或3 “ 不是 ” ); ( 3)请再写出一对符合条件的 “ 共生有理数对 ” 为 ;(注意:不能与题目中已有的 “ 共生有理数对 ” 重复)
8、( 3)若( a, 3)是 “ 共生有理数对 ” ,求 a的值 4 参考答案与试题解析 一选择题(共 15小题) 1解: A、 1是负整数,故选项错误; B、 0是非正整数 ,故选项错误; C、 是分数,不是整数,错误; D、 1是正整数,故选项正确 故选: D 2解:最小的正整数是 1, 故选: B 3解: A、负数是小于 0的数,在负数和 0的前面加上 “ ” 号,所得的数是非负数,故 A错误; B、 0既不是正数也不是负数,是正数和负数的分界点,故 B 错误; C、若 a 是正数,则 a 0, a 0,所以 a一定是负数,故 C错误; D、 0既不是正数也不是负数,是正数和负数的分界点,
9、故 D 正确 故选: D 4解:没有最小的正有理数, 故选: D 5解:负分数有 3.2, 故 选: D 6解: ( 3) =3, 在以上各数中,整数有: +1、( 3)、 0、 5,共有 4个 故选: C 7解: A、由( 3, ),得到 a b= , a?b+1= +1= ,不符合题意; B、由( 2, ),得到 a b= , a?b+1= +1= ,不符合题意; C、由( 5, ),得到 a b= , a?b+1= +1= ,不符合题意; D、由( 2, ),得到 a b= , a?b+1= +1= ,符合题意, 故选: D 8解:如果 m是一个有理数,那么 m是正数、零、负数, 故选:
10、 D 9解:非负数包括零和正数, A错误; 正整数指大于 0的整数, B错误; 没有最小的整数, C错误; 整数和分数统称为有理数,这是概念, D正确 故选: D 10解: A、 0既不是正数,也不是负数,说法正确; B、 0的绝对值是 0,说法正确; C、一个有理数不是整数就是分数,说法正确; D、 1是绝对值最小的正数,说法错误, 0.1的绝对值比 1还小 故选: D 11解:在 , 2, 0.3, , 0.1010010001这五个数中,有理数的个数为 2, 0.3, ,0.1010010001 5 故选: D 12解: A、整数只包括正整数和负整数,说法错误; B、 0既是正数也是负数
11、,说法错误; C、没有最小的有理数,说法正确; D、 1 是最大的负有理数,说法错误; 故选: C 13解: A、整数可分为正整数和负整数, 0,故原题说法错误; B、分数可分为正分数和负分数,故原题说法正确; C、 0属于整数,不属于分数,故原题说法错误; D、一个数不是正数就是负数或 0,故原题说法错误; 故选: B 14解: A、一个有理数,不是正数,有可能是负数或零,故本选项错误; B、一个有理数,不是整数就是分数,故本选项正 确; C、有理数就是正有理数、负有理数和零的统称,故本选项错误; D、有理数就是正有理数、负有理数和零的统称,故本选项错误 故选: B 15解: A、没有最小的
12、有理数,故 A错误; B、没有最小的整数,故 B错误; C、 0没有倒数,故 C错误; D、 0是最小的非负数,故 D正确; 故选: D 二填空题(共 10小题) 16解:根据题意得:( 1 2 3+4) +( 5 6 7+8) =0; 故答案为: 0 17解:因为整数包括正整数、负整数和 0,所以属于整数的有: 0, 5 故答案是: 0, 5 18解:非负有理数是 1, + , 0 故答案为: 1, + , 0 19解:根据题意得: = + , 故答案为: = + 20解:由于三个互不相等的有理数,既表示为 1, a+b, a的形式,又可以表示为 0, , b 的形式,也就是说这两个数组的数
13、分别对应相等 于是可以判定 a+b与 a中有一个是 0,有一个是 1,但若 a=0,会使 无意义, a 0,只能 a+b=0,即 a= b,于是 只能是 b=1,于是 a= 1 原式 =( 1) 2008+12017=1+1=2, 故答案为: 2 21解:由概念可知:整数 是表示物体个数的数所以整数有: 5, 0, 7 把单位 “1” 平均分成若干份,表示这样的一份或几份的数叫分数有: 0.5, 3.5, 12 ,10%; 6 负数为小于零的数所以负数有: 3.5, 12 , 7 故答案为: 5, 0, 7; 0.5, 3.5, 12 , 10%; 3.5, 12 , 7 22解:如图,根据题
14、意知, x 4且 x 3,则 x=2或 x=1, x前面的数要比 x小, x=2, 每一行从左到右、每一列从上到下分别依次增大, 9只能填在右下角, 5只能填右上角或左下角, 5之后与之相邻的空 格可填 6、 7、 8任意一个, 余下的两个数字按从小到大只有一种方法, 共有 2 3=6种结果 故答案为: 6 23解:根据题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号; 如第四行最末的数字是 42=16,第 9行最后的数字是 81, 第 10 行从左边数第 9个数是 81+9=90, 201=( 142+5), 是第 15行从左边数第 5个数 故应填: 90; 15; 5 24解:没有没有最小的正数;没有最大的负数,因为正数和负数都有无数个,它们都没有最大和最小的值; 因 为 0的绝对
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。