ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:2.54MB ,
文档编号:3665789      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3665789.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(双曲线及其标准方程(公开课)课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

双曲线及其标准方程(公开课)课件.ppt

1、选修选修2-1 2.3 双曲线双曲线2.3.1 双曲线及其标准方程双曲线及其标准方程复习旧知 导入新知 1.1.椭圆的定义椭圆的定义 2.2.椭圆的标准方程椭圆的标准方程)0(1,122222222babxaybyax和和 等于常数等于常数 2a(2a|F1F2|)的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F F1 1、F F2 2的距离之的距离之 3.3.椭圆的标准方程中椭圆的标准方程中a,b,ca,b,c的关系的关系222cba复习旧知 导入新知和和 等于常数等于常数 2a(2a|F1F2|0)的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F F1 1、F F2 2的距离的的距

2、离的椭圆的定义:椭圆的定义:差差等于常数等于常数 的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定点平面内与两定点F F1 1、F F2 2的距离的的距离的提出问题:提出问题:实验探究 生成定义动画演示动画演示数学试验演示数学试验演示11取一条拉链;取一条拉链;22如图把它固定在如图把它固定在 板上的两点板上的两点F F1 1、F F2 2;3 3 拉动拉链(拉动拉链(M M)。)。思考思考:拉链运动的:拉链运动的 轨迹是什么?轨迹是什么?实验探究 生成定义数学试验演示数学试验演示11取一条拉链;取一条拉链;22如图把它固定在如图把它固定在 板上的两点板上的两点F F1 1、F F2 2;

3、3 3 拉动拉链(拉动拉链(M M)。)。思考思考:拉链运动的:拉链运动的 轨迹是什么?轨迹是什么?平面内平面内与两个与两个定点定点F1,F2的的距离的距离的差差的绝对值等于常数的绝对值等于常数(小于(小于F1F2)的点的的点的轨迹叫做双曲线轨迹叫做双曲线.两个定点两个定点F1、F2双曲线的双曲线的焦点焦点;|F1F2|=焦距焦距.(02a2c)oF2F1M|-|=(02a|F1F2|)讨论:讨论:定义当中条件定义当中条件2a2c,则轨迹是什么?则轨迹是什么?(3)若)若2a=0,则轨迹是什么?则轨迹是什么?理解概念 探求方程F2F1MxOy 以以F1,F2所在的直线为所在的直线为x轴,线段轴

4、,线段F1F2的的中点为原点建立直角坐标系,设中点为原点建立直角坐标系,设M(x,y),则则F1(-c,0),F2(c,0)求点求点M轨迹方程。轨迹方程。|MF1|-|MF2|=2a理解概念 探求方程yoF1M P=M|MF1|-|MF2|=+2a _再次平方再次平方,得,得:(c2-a2)x2-a2y2=a2(c2-a2)由双曲线的定义知由双曲线的定义知,2c2a,即即ca,故故c2-a20,令令c c2 2-a-a2 2=b=b2 2,其中其中b0,b0,代入整理得:代入整理得:2 2a ay yc c)(x xy yc c)(x x2 22 22 22 2 =x2a2-y2b21(a0,

5、b0)(自由发言,其他小组仔细观察、听取推导(自由发言,其他小组仔细观察、听取推导过程,如有不同见解及时补充。)过程,如有不同见解及时补充。)理解概念 探求方程xyoF1F2M=x2a2-y2b21(a0,b0)方程方程叫做双曲线的标准方程叫做双曲线的标准方程(三)提炼精华,总结方程(三)提炼精华,总结方程 当双曲线的当双曲线的焦点在焦点在y轴轴上时上时,它的标准方程它的标准方程 是怎样的呢?是怎样的呢?思考:思考:理解概念 探求方程F1F2xyF1F2oxy(1 1)焦点在)焦点在上上(2 2)焦点在)焦点在上上22ax22by=122ay22bx=1F F1 1(-c,0-c,0)、)、F

6、 F2 2(c ,0c ,0)F F1 1(0,-c0,-c)、)、F F2 2(0,c 0,c)c2=a2b2(a0,b0)o归纳比较 强化新知F(c,0)F(c,0)a0,b0,但,但a不一不一定大于定大于b,c2=a2+b2ab0,a2=b2+c2|MF1|MF2|=2a|MF1|+|MF2|=2a 椭椭 圆圆双曲线双曲线F(0,c)F(0,c)22221(0)xyabab22221(0)yxabab22221(0,0)xyabab22221(0,0)yxabab知识迁移 深化认知例例1 1:如果方程如果方程 表示双表示双曲线,求曲线,求m的取值范围的取值范围.22121xymm解解:2

7、2121xymm 思考:思考:21得或mm (2)(1)0由m m2m 知识迁移 深化认知知识迁移 深化认知四、插入视频例例3 3.已知圆已知圆C1:(x+3)2+y2=1和圆和圆C2:(x-3)2+y2=9,动圆动圆M同时与圆同时与圆C1及圆及圆C2相外切,求动圆圆心相外切,求动圆圆心M的轨的轨迹方程迹方程解:设动圆解:设动圆M与圆与圆C1及圆及圆C2分别外切于点分别外切于点A 和和B,根据两圆外切的条件,根据两圆外切的条件,|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|这表明动点这表明动点M与两定点与两定点C2、C1的距离的差是常数的距离的差是常数2根根据双曲线的定义,

8、动点据双曲线的定义,动点M的轨迹为双曲线的左支的轨迹为双曲线的左支(点点M与与C2的距离大,与的距离大,与C1的距离小的距离小),这里,这里a=1,c=3,则,则b2=8,设点,设点M的坐标为的坐标为(x,y),其轨迹方程为:,其轨迹方程为:知识迁移 深化认知 变式训练:已知已知B(-5,0),),C(5,0)是三)是三角形角形ABC的两个顶点,且的两个顶点,且3sinsinsin,5BCA求顶点求顶点A的的轨迹方程。轨迹方程。3 sinsinsin,5BCA 解:在解:在ABCABC中,中,|BC|=10|BC|=10,331061055ACABBC 故顶点故顶点A的轨迹是以的轨迹是以B、C为焦点的双曲线的左支为焦点的双曲线的左支又因又因c=5,a=3,则,则b=41 (3)916xyx 2 22 2则顶点则顶点A的轨迹方程为的轨迹方程为

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|