ImageVerifierCode 换一换
格式:PDF , 页数:16 ,大小:265.85KB ,
文档编号:375361      下载积分:7.5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-375361.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(卧龙小子)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高中数学所有公式大全总结(非常有用).pdf)为本站会员(卧龙小子)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高中数学所有公式大全总结(非常有用).pdf

1、 高中数学常用公式及常用结论高中数学常用公式及常用结论 1. 元素与集合的关系 U xAxC A, U xC AxA. 2.德摩根公式 ();() UUUUUU CABC AC B CABC AC B=. 3.包含关系 ABAABB= UU ABC BC A U AC B= U C ABR= 4集合 12 , n a aa的子集个数共有2n 个;真子集有2n1 个; 非空子集有2n 1 个;非空的真子集有2n2 个. 5.二次函数的解析式的三种形式 (1)一般式 2 ( )(0)f xaxbxc a=+; (2)顶点式 2 ( )()(0)f xa xhk a=+; (3)零点式 12 ( )

2、()()(0)f xa xxxxa=. 6.闭区间上的二次函数的最值最值 二次函数)0()( 2 +=acbxaxxf在闭区间qp,上的最值只能在 a b x 2 =处 及区间的两端点处取得,具体如下: (1)当 a0 时,若qp a b x, 2 =,则 minmaxmax ( )(),( )( ),( ) 2 b f xff xf pf q a =; 若qp a b x, 2 =, maxmax ( )( ),( )f xf pf q=, minmin ( )( ),( )f xf pf q=. (2)当 a+=cbxaxxf恒成立的充要条件是 0 0 0 a b c 或 2 0 40 a

3、 bac 上是增函数; 1212 ()()()0xxf xf x. (2) ()(0, ,) rsrs aaar sQ=. (3)()(0,0,) rrr aba b abrQ=. 注: 若 a0,p 是一个无理数,则 a p表示一个确定的实数上述有理指数 幂的运算性质,对于无理数指数幂都适用. 17.指数式与对数式的互化式 log b a NbaN=(0,1,0)aaN. 18.对数的换底公式 log log log m a m N N a = (0a ,且1a ,0m ,且1m , 0N ). 推论 loglog m n a a n bb m =(0a ,且1a ,0m n ,且1m ,1

4、n , 0N ). 19对数的四则运算法则 若 a0,a1,M0,N0,则 (1)log ()loglog aaa MNMN=+; (2) logloglog aaa M MN N =; (3)loglog() n aa MnM nR=. 20.等差等差数列的通项公式 * 11 (1)() n aanddnad nN=+=+; 其前 n 项和公式为 1 () 2 n n n aa s + = 1 (1) 2 n n nad =+ 2 1 1 () 22 d nad n=+. 21. .等比等比数列的通项公式 1* 1 1 () nn n a aa qqnN q =; 其前 n 项的和公式为 1

5、 1 (1) ,1 1 ,1 n n aq q sq na q = = 22常见三角不等式 (1)若(0,) 2 x ,则sintanxxx (4)柯西不等式: 22222 ()()() , , , ,.abcdacbda b c dR+ (5)bababa+. 44.最值定理(积定和最小积定和最小) 已知yx,都是正数,则有 (1)若积xy是定值p,则当yx =时和yx +有最小值p2; (2)若和yx +是定值s,则当yx =时积xy有最大值 2 4 1 s. 推广 已知Ryx,,则有xyyxyx2)()( 22 +=+ (1)若积 xy是定值,则当|yx 最大时,|yx +最大; 当|y

6、x 最小时,|yx +最小. (2)若和|yx +是定值,则当|yx 最大时, | xy最小; 当|yx 最小时, | xy最大. 45.指数不等式与对数不等式 (1)当1a 时, ( )( ) ( )( ) f xg x aaf xg x; ( )0 log( )log( )( )0 ( )( ) aa f x f xg xg x f xg x . (2)当01a 或0或0的参数方程是 cos sin xa yb = = . 椭圆 22 22 1(0) xy ab ab +=焦半径公式 )( 2 1 c a xePF+=,)( 2 2 x c a ePF=. 椭圆的的内外部 (1)点 00

7、(,)P xy在椭圆 22 22 1(0) xy ab ab +=的内部 22 00 22 1 xy ab +的外部 22 00 22 1 xy ab + . 56.双曲线双曲线 22 22 1(0,0) xy ab ab =的焦半径公式 2 1 | ()| a PFe x c =+, 2 2 | ()| a PFex c =. 双曲线的内外部 (1)点 00 (,)P xy在双曲线 22 22 1(0,0) xy ab ab =的内部 22 00 22 1 xy ab . (2)点 00 (,)P xy在双曲线 22 22 1(0,0) xy ab ab =的外部 22 00 22 1 xy

8、 ab ,焦 点在 x 轴上,0焦半径 0 2 p CFx=+. 过焦点弦长pxx p x p xCD+=+= 2121 22 . 58.直线与圆锥曲线相交的弦长公式弦长公式 2222 211212 (1)()| 1tan| 1tABkxxxxyyco=+=+=+ (弦端点 A),(),( 2211 yxByx,由方程 = += 0)y, x(F bkxy 消去 y 得到0 2 =+cbxax, 0 ,为直线AB的倾斜角,k为直线的斜率). 59证明直线与直线的平行直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (

9、4)转化为线面垂直; (5)转化为面面平行. 证明直线与平面的平行直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 证明平面与平面平行平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 证明直线与直线的垂直直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 证明直线与直线与平面垂直平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直;

10、 (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 证明平面与平面的垂直平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 60.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和, 等于以这三个向量为棱的平 行六面体的以公共始点为始点的对角线所表示的向量. 61.共共线线向量定理 对空间任意两个向量 a、b(b0 ),ab存在实数使 a=b PAB、 、三点共线三点共线|APABAPtAB= (1)OPt OAtOB=+ . |AB CDAB 、

11、CD 共线且ABCD、不共线ABtCD= 且ABCD、不共线. 62.共面共面向量定理 向量 p p 与两个不共线的向量 a a、b b 共面的 存在实数对 , x y,使 paxby=+ 推论:空间一点 P 位于平面 MAB 内的存在有序实数对, x y ,使 MPxMAyMB=+ , 或 对 空 间 任 一 定 点O , 有 序 实 数 对, x y, 使 OPOMxMAyMB=+ . 63.对空间任一点 O 和不共线的三点 A、B、C,满足OPxOAyOBzOC=+ (xyzk+=) ,则当1k =时,对于空间任一点O,总有 P、A、B、C 四点共面; 当1k 时,若O平面 ABC,则

12、P、A、B、C 四点共面;若O平面 ABC,则 P、A、 B、C 四点不共面 C AB、 、 、D四点共面四点共面AD 与AB 、AC 共面ADxAByAC=+ (1)ODxy OAxOByOC=+ (O平面 ABC). 64.空间向量基本定理 如果三个向量 a a、b b、c c 不共面,那么对空间任一向量 p p,存在一个唯一的有 序实数组 x,y,z,使 p pxa ayb bzc c 推论 设 O、A、B、C 是不共面的四点,则对空间任一点 P,都存在唯一的 三个有序实数 x,y,z,使OPxOAyOBzOC=+ . 65.向量的直角坐标运算 设a a 123 (,)a a a,b b

13、 123 ( ,)b b b 则 (1)a ab b 112233 (,)ab ab ab+; (2)a ab b 112233 (,)ab ab ab; (3)a a 123 (,)aaa (R); (4)a ab b 1 1223 3 aba ba b+; 设 A 111 ( ,)x y z,B 222 (,)xyz,则 ABOBOA= = 212121 (,)xx yy zz. 66空间的线线平行或垂直 设 111 ( ,)ax y z= r , 222 (,)bxyz= r ,则 a a|b b(0)ab b= rr rr 12 12 12 xx yy zz = = = ; ab rr

14、 0a b= r r 12121 2 0x xy yz z+=. 67.夹角公式 设a a 123 (,)a a a,b b 123 ( ,)b b b,则 cosa a,b b= 1 1223 3 222222 123123 aba ba b aaabbb + + . 推论 2222222 1 1223 3123123 ()()()aba ba baaabbb+,此即三维柯西不等式. 68异面直线异面直线所成角 cos|cos,|a b= r r = 12121 2 222222 111222 | | | x xy yz za b abxyzxyz + = + r r rr (其中(090

15、x f,右侧0)( x f,则)( 0 xf是极大值; (2)如果在 0 x附近的左侧0)( x f,则)( 0 xf是极小值. 90.复数复数的相等,abicdiac bd+=+=.(, , ,a b c dR) 复数zabi=+的模(或绝对值)| z=|abi+= 22 ab+. 91.复数的四则运算法则 (1)()()()()abicdiacbd i+=+; ; (2)()()()()abicdiacbd i+=+; ; (3)()()()()abi cdiacbdbcad i+=+; ; (4) 2222 ()()(0) acbdbcad abicdii cdi cdcd + +=+ + . 92.实系数一元二次方程的解 实系数一元二次方程 2 0axbxc+=, 若 2 40bac =,则 2 1,2 4 2 bbac x a =; 若 2 40bac =,则 12 2 b xx a = ; 若 2 40bac =,它在实数集R 内没有实数根;在复数集C内有且仅有 两个共轭复数根 2 2 (4) (40) 2 bbac i xbac a =.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|