ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:332.29KB ,
文档编号:3762470      下载积分:5.98 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3762470.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2016年普通高等学校招生全国统一考试文科数学(山东卷).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2016年普通高等学校招生全国统一考试文科数学(山东卷).docx

1、2016年普通高等学校招生全国统一考试山东文科数学1.(2016山东,文1)设集合U=1,2,3,4,5,6,A=1,3,5,B=3,4,5,则U(AB)=() A.2,6B.3,6C.1,3,4,5D.1,2,4,6答案A由已知可得AB=1,3,4,5,故U(AB)=2,6.2.(2016山东,文2)若复数z=21-i,其中i为虚数单位,则z=()A.1+iB.1-iC.-1+iD.-1-i答案Bz=21-i=2(1+i)(1-i)(1+i)=1+i,故z=1-i.3.(2016山东,文3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范

2、围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140答案D由频率分布直方图可知,这200名学生每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)2.5=0.7,故该区间内的人数为2000.7=140.故选D.4.(2016山东,文4)若变量x,y满足x+y2,2x-3y9,x0,则x2+y2的最大值是()A.4B.9C.10D.12答案C如图,作出不等式组所表示的可行域(阴影部分),设可行域内任一点

3、P(x,y),则x2+y2的几何意义为|OP|2.显然,当P与A重合时,取得最大值.由x+y=2,2x-3y=9,解得A(3,-1).所以x2+y2的最大值为32+(-1)2=10.故选C.5.(2016山东,文5)一个由半球和四棱锥组成的几何体,其三视图如下图所示,则该几何体的体积为()A.13+23B.13+23C.13+26D.1+26答案C由三视图可知,四棱锥为底面边长为1的正方形,高为1.其体积V1=13121=13.设球的半径为R,因为四棱锥的底面是半球底面的内接正方形,故2R=2,即R=22.所以半球的体积为V2=1243R3=1243223=26.故该几何体的体积为V=V1+V

4、2=13+26.故选C.6.(2016山东,文6)已知直线a,b分别在两个不同的平面,内.则“直线a和直线b相交”是“平面和平面相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A若直线a,b相交,设交点为P,则Pa,Pb.又因为a,b,所以P,P.故,相交.反之,若,相交,设交线为l,当a,b都与直线l不相交时,则有ab.显然a,b可能相交,也可能异面或平行.综上,“直线a,b相交”是“平面,相交”的充分不必要条件.7.(2016山东,文7)已知圆M:x2+y2-2ay=0(a0)截直线x+y=0所得线段的长度是22.则圆M与圆N:(x-1)2+(y-1

5、)2=1的位置关系是()A.内切B.相交C.外切D.相离答案B圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d=|0+a|12+12=22a.所以直线x+y=0被圆M所截弦长为2R2-d2=2a2-22a2=2a,由题意可得2a=22,故a=2.圆N的圆心N(1,1),半径r=1.而|MN|=(1-0)2+(1-2)2=2,显然R-r|MN|R+r,所以两圆相交.8.(2016山东,文8)ABC中,角A,B,C的对边分别是a,b,c.已知b=c,a2=2b2(1-sin A),则A=()A.34B.3C.4D.6答案C由余弦定理可得

6、a2=b2+c2-2bccos A,又因为b=c,所以a2=b2+b2-2bbcos A=2b2(1-cos A).由已知a2=2b2(1-sin A),所以sin A=cos A,因为A(0,),所以A=4.9.(2016山东,文9)已知函数f(x)的定义域为R.当x12时,fx+12=fx-12,则f(6)=()A.-2B.-1C.0D.2答案D由题意可知,当-1x1时,f(x)为奇函数;当x12时,由fx+12=fx-12可得f(x+1)=f(x).所以f(6)=f(51+1)=f(1).而f(1)=-f(-1)=-(-1)3-1=2.所以f(6)=2.故选D.10.(2016山东,文1

7、0)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sin xB.y=ln xC.y=exD.y=x3答案A设曲线上两点P(x1,y1),Q(x2,y2).则由导数几何意义可知,两条切线的斜率分别为k1=f(x1),k2=f(x2),若函数具有T性质,则k1k2=f(x1)f(x2)=-1.A项,f(x)=cos x,显然k1k2=cos x1cos x2=-1有无数组解,所以该函数具有性质T;B项,f(x)=1x(x0),显然k1k2=1x11x2=-1无解,故该函数不具有性质T;C项,f(x)=ex

8、0,显然k1k2=ex1ex2=-1无解,故该函数不具有性质T;D项,f(x)=3x20,显然k1k2=3x123x22=-1无解,故该函数不具有性质T.综上,选A.11.(2016山东,文11)执行下边的程序框图,若输入n的值为3,则输出的S的值为.答案1解析开始:i=1,S=0,第一次运算:S=0+1+1-1=2-1,显然13不成立,所以i=1+1=2;第二次运算:S=(2-1)+2+1-2=3-1,显然23不成立,所以i=2+1=3;第三次运算:S=(3-1)+3+1-3=2-1=1,因为33成立,所以输出S=1.12.(2016山东,文12)观察下列等式:sin3-2+sin23-2=

9、4312;sin5-2+sin25-2+sin35-2+sin45-2=4323;sin7-2+sin27-2+sin37-2+sin67-2=4334;sin9-2+sin29-2+sin39-2+sin89-2=4345;照此规律:sin2n+1-2+sin22n+1-2+sin32n+1-2+sin2n2n+1-2=.答案43n(n+1)解析由等式可知,等式右边共三个数相乘,第一个数都是43;而所给等式就是第n个式子,显然第2个数与该等式所在行数相同,故第2个数为n;第三个数比第2个数大1,所以第3个数为n+1.所以第n个式子等号右边为43n(n+1).13.(2016山东,文13)已知

10、向量a=(1,-1),b=(6,-4).若a(ta+b),则实数t的值为.答案-5解析由a(ta+b)可得a(ta+b)=0,所以ta2+ab=0,而a2=12+(-1)2=2,ab=16+(-1)(-4)=10,所以有t2+10=0,解得t=-5.14.(2016山东,文14)已知双曲线E:x2a2-y2b2=1(a0,b0).矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.答案2解析由题意不妨设AB=3,则BC=2.设AB,CD的中点分别为M,N,如图,则在RtBMN中,MN=2,故BN=BM2+MN2=322+22=52.由双曲线的

11、定义可得2a=BN-BM=52-32=1,而2c=MN=2,所以双曲线的离心率e=2c2a=2.15.(2016山东,文15)已知函数f(x)=|x|,xm,x2-2mx+4m,xm,其中m0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.答案(3,+)解析当xm时,f(x)=x2-2mx+4m=(x-m)2+4m-m2.其所在抛物线的顶点为P(m,4m-m2).函数y=f(x)的图象与直线x=m的交点为Q(m,m).(分类讨论)(1)点P在点Q的上方或与Q点重合时,即4m-m2m,也就是m(m-3)0时,解得0m3,又因为m0,所以0m3.此时函数的图象如图所示

12、(实线部分),显然此时直线y=b与函数图象最多只有两个交点,不合题意;(2)点P在点Q的下方时,即4m-m20时,解得m3,又因为m0,所以m3.此时函数的图象如图所示(实线部分),显然此时直线y=b与函数图象最多可有三个交点,符合题意.所以m3.16.(2016山东,文16)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:若xy3,则奖励玩具一个;若xy8,则奖励水杯一个;其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求

13、小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间与点集S=(x,y)|xN,yN,1x4,1y4一一对应.因为S中元素的个数是44=16,所以基本事件总数n=16.(1)记“xy3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy8”为事件B,“3xy516,所以小亮获得水杯的概率大于获得饮料的概率.17.(2016山东,文17)设f(x)=23sin(-x)sin x-(sin

14、x-cos x)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3个单位,得到函数y=g(x)的图象,求g6的值.解(1)由f(x)=23sin(-x)sin x-(sin x-cos x)2=23sin2x-(1-2sin xcos x)=3(1-cos 2x)+sin 2x-1=sin 2x-3cos 2x+3-1=2sin2x-3+3-1,由2k-22x-32k+2(kZ),得k-12xk+512(kZ),所以f(x)的单调递增区间是k-12,k+512(kZ)或k-12,k+512(kZ).(2)由(1

15、)知f(x)=2sin2x-3+3-1,把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=2sinx-3+3-1的图象,再把得到的图象向左平移3个单位,得到y=2sin x+3-1的图象,即g(x)=2sin x+3-1.所以g6=2sin6+3-1=3.18.(2016山东,文18)在如图所示的几何体中,D是AC的中点,EFDB.(1)已知AB=BC,AE=EC.求证:ACFB;(2)已知G,H分别是EC和FB的中点.求证:GH平面ABC.证明(1)因为EFDB,所以EF与DB确定平面BDEF.连接DE.因为AE=EC,D为AC的中点,所以DEAC.同理可得BDAC

16、.又BDDE=D,所以AC平面BDEF.因为FB平面BDEF,所以ACFB.(2)设FC的中点为I,连接GI,HI.在CEF中,因为G是CE的中点,所以GIEF.又EFDB,所以GIDB.在CFB中,因为H是FB的中点,所以HIBC.又HIGI=I,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.19.(2016山东,文19)已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1.(1)求数列bn的通项公式;(2)令cn=(an+1)n+1(bn+2)n,求数列cn的前n项和Tn.解(1)由题意知当n2时,an=Sn-Sn-1=6n+5,当n=1时,

17、a1=S1=11,符合上式.所以an=6n+5.设数列bn的公差为d.由a1=b1+b2,a2=b2+b3,即11=2b1+d,17=2b1+3d,可解得b1=4,d=3,所以bn=3n+1.(2)由(1)知cn=(6n+6)n+1(3n+3)n=3(n+1)2n+1.又Tn=c1+c2+cn,得Tn=3222+323+(n+1)2n+1,2Tn=3223+324+(n+1)2n+2,两式作差,得-Tn=3222+23+24+2n+1-(n+1)2n+2=34+4(1-2n)1-2-(n+1)2n+2=-3n2n+2,所以Tn=3n2n+2.20.(2016山东,文20)设f(x)=xln x

18、-ax2+(2a-1)x,aR.(1)令g(x)=f(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.解(1)由f(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x(0,+).则g(x)=1x-2a=1-2axx,当a0时,x(0,+)时,g(x)0,函数g(x)单调递增;当a0时,x0,12a时,g(x)0,函数g(x)单调递增,x12a,+时,函数g(x)单调递减.所以当a0时,g(x)的单调增区间为(0,+);当a0时,g(x)单调增区间为0,12a,单调减区间为12a,+.(2)由(1)知,f(1)=0.当a0时,f(x)单

19、调递增,所以当x(0,1)时,f(x)0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.当0a1,由(1)知f(x)在0,12a内单调递增,可得当x(0,1)时,f(x)0.所以f(x)在(0,1)内单调递减,在1,12a内单调递增,所以f(x)在x=1处取得极小值,不合题意.当a=12时,12a=1,f(x)在(0,1)内单调递增,在(1,+)内单调递减,所以当x(0,+)时,f(x)0,f(x)单调递减,不合题意.当a12时,012a0,f(x)单调递增,当x(1,+)时,f(x)12.21.(2016山东,文21)已知椭圆C:x2a2+y2b2=1(ab0)的长轴长为4,

20、焦距为22.(1)求椭圆C的方程;(2)过动点M(0,m)(m0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.设直线PM,QM的斜率分别为k,k,证明kk为定值;求直线AB的斜率的最小值.解(1)设椭圆的半焦距为c.由题意知2a=4,2c=22,所以a=2,b=a2-c2=2.所以椭圆C的方程为x24+y22=1.(2)设P(x0,y0)(x00,y00).由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k=2m-mx0=mx0,直线QM的斜率k=-2m-mx0=-3mx0.此时kk

21、=-3.所以kk为定值-3.设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立y=kx+m,x24+y22=1,整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=2m2-42k2+1,可得x1=2(m2-2)(2k2+1)x0,所以y1=kx1+m=2k(m2-2)(2k2+1)x0+m,同理x2=2(m2-2)(18k2+1)x0,y2=-6k(m2-2)(18k2+1)x0+m.所以x2-x1=2(m2-2)(18k2+1)x0-2(m2-2)(2k2+1)x0=-32k2(m2-2)(18k2+1)(2k2+1)x0,y2-y1=-6k(m2-2)(18k2+1)x0+m-2k(m2-2)(2k2+1)x0-m=-8k(6k2+1)(m2-2)(18k2+1)(2k2+1)x0,所以kAB=y2-y1x2-x1=6k2+14k=146k+1k.由m0,x00,可知k0,所以6k+1k26,等号当且仅当k=66时取得.此时m4-8m2=66,即m=147,符合题意.所以直线AB的斜率的最小值为62.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|