ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:214.78KB ,
文档编号:3762529      下载积分:5.98 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3762529.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2015年普通高等学校招生全国统一考试文科数学(福建卷).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2015年普通高等学校招生全国统一考试文科数学(福建卷).docx

1、2015年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015福建,文1)若(1+i)+(2-3i)=a+bi(a,bR,i是虚数单位),则a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4答案:A解析:由已知得3-2i=a+bi,a,bR,a=3,b=-2.故选A.2.(2015福建,文2)若集合M=x|-2x2,N=0,1,2,则MN等于()A.0B.1C.0,1,2D.0,1答案:D解析:M=x|-2x0,b0)过点(1,1),

2、则a+b的最小值等于()A.2B.3C.4D.5答案:C解析:直线xa+yb=1过点(1,1),1a+1b=1.又a,b均大于0,a+b=(a+b)1a+1b=1+1+ba+ab2+2baab=2+2=4,故选C.6.(2015福建,文6)若sin =-513,且为第四象限角,则tan 的值等于()A.125B.-125C.512D.-512答案:D解析:sin =-513,且为第四象限角,cos =1-sin2=1213,于是tan =sincos=-512,故选D.7.(2015福建,文7)设a=(1,2),b=(1,1),c=a+kb.若bc,则实数k的值等于()A.-32B.-53C.

3、53D.32答案:A解析:a=(1,2),b=(1,1),c=(1+k,2+k).bc,bc=1+k+2+k=0.k=-32.故选A.8.(2015福建,文8)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)=x+1,x0,-12x+1,xb0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.0,32B.0,34C.32,1D.34,1答案:A解析:如图,取椭圆的左焦点F1,连接AF1,BF1.由椭圆的对称性知四边形AF1BF是平行四边

4、形,|AF|+|BF|=|AF1|+|AF|=2a=4.a=2.不妨设M(0,b),则|30-4b|32+4245,b1.e=ca=1-ba21-122=32.又0e1,0e32.故选A.12.(2015福建,文12)“对任意x0,2,ksin xcos xx”是“k1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:当x0,2时,sin xx,且0cos x1,sin xcos xx.k1时有ksin xcos xx.反之不成立.如当k=1时,对任意的x0,2,sin xx,0cos x1,所以ksin xcos x=sin xcos xx

5、成立,这时不满足k0,q0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于.答案:9解析:由题意,得a+b=p0,ab=q0,a0,b0.不妨设a0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.(1)解:由抛物线的定义,得|AF|=2+p2.因为|AF|=3,即2+p2=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:因为点A(2,m)在抛物线E:y2=4x上,所以m=22,由抛

6、物线的对称性,不妨设A(2,22).由A(2,22),F(1,0)可得直线AF的方程为y=22(x-1).由y=22(x-1),y2=4x得2x2-5x+2=0,解得x=2或x=12,从而B12,-2.又G(-1,0),所以kGA=22-02-(-1)=223,kGB=-2-012-(-1)=-223,所以kGA+kGB=0,从而AGF=BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以m=22,由抛物线的对称性,不妨设A(2,22).由A(2,2

7、2),F(1,0)可得直线AF的方程为y=22(x-1).由y=22(x-1),y2=4x得2x2-5x+2=0,解得x=2或x=12,从而B12,-2.又G(-1,0),故直线GA的方程为22x-3y+22=0,从而r=|22+22|8+9=4217 .又直线GB的方程为22x+3y+22=0,所以点F到直线GB的距离d=|22+22|8+9=4217=r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.20.(本小题满分12分)(2015福建,文20)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.(1)若D为线段AC的中点,求证:A

8、C平面PDO;(2)求三棱锥P-ABC体积的最大值;(3)若BC=2,点E在线段PB上,求CE+OE的最小值.(1)证明:在AOC中,因为OA=OC,D为AC的中点,所以ACDO.又PO垂直于圆O所在的平面,所以POAC.因为DOPO=O,所以AC平面PDO.(2)解:因为点C在圆O上,所以当COAB时,C到AB的距离最大,且最大值为1.又AB=2,所以ABC面积的最大值为1221=1.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为1311=13.(3)解法一:在POB中,PO=OB=1,POB=90.所以PB=12+12=2.同理PC=2,所以PB=PC=BC.在三棱锥

9、P-ABC中,将侧面BCP绕PB旋转至平面BCP,使之与平面ABP共面,如图所示.当O,E,C共线时,CE+OE取得最小值.又因为OP=OB,CP=CB,所以OC垂直平分PB,即E为PB中点.从而OC=OE+EC=22+62=2+62,亦即CE+OE的最小值为2+62.解法二:在POB中,PO=OB=1,POB=90,所以OPB=45,PB=12+12=2.同理PC=2.所以PB=PC=BC,所以CPB=60.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BCP,使之与平面ABP共面,如图所示.当O,E,C共线时,CE+OE取得最小值.所以在OCP中,由余弦定理得:OC2=1+2-212c

10、os(45+60)=1+2-222212-2232=2+3.从而OC=2+3=2+62.所以CE+OE的最小值为22+62.21.(本小题满分12分)(2015福建,文21)已知函数f(x)=103sinx2cosx2+10cos2x2.(1)求函数f(x)的最小正周期;(2)将函数f(x)的图象向右平移6个单位长度,再向下平移a(a0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2.求函数g(x)的解析式;证明:存在无穷多个互不相同的正整数x0,使得g(x0)0.(1)解:因为f(x)=103sinx2cosx2+10cos2x2=53sin x+5cos x+5=10sin

11、x+6+5,所以函数f(x)的最小正周期T=2.(2)解:将f(x)的图象向右平移6个单位长度后得到y=10sin x+5的图象,再向下平移a(a0)个单位长度后得到g(x)=10sin x+5-a的图象.又已知函数g(x)的最大值为2,所以10+5-a=2,解得a=13.所以g(x)=10sin x-8.证明:要证明存在无穷多个互不相同的正整数x0,使得g(x0)0,就是要证明存在无穷多个互不相同的正整数x0,使得10sin x0-80,即sin x045.由4532知,存在0045.因为y=sin x的周期为2,所以当x(2k+0,2k+-0)(kZ)时,均有sin x45.因为对任意的整

12、数k,(2k+-0)-(2k+0)=-2031,所以对任意的正整数k,都存在正整数xk(2k+0,2k+-0),使得sin xk45.亦即,存在无穷多个互不相同的正整数x0,使得g(x0)0.22.(本小题满分14分)(2015福建,文22)已知函数f(x)=ln x-(x-1)22.(1)求函数f(x)的单调递增区间;(2)证明:当x1时,f(x)1,当x(1,x0)时,恒有f(x)k(x-1).(1)解:f(x)=1x-x+1=-x2+x+1x,x(0,+).由f(x)0得x0,-x2+x+10,解得0x1+52.故f(x)的单调递增区间是0,1+52.(2)证明:令F(x)=f(x)-(x-1),x(0,+),则有F(x)=1-x2x.当x(1,+)时,F(x)1时,F(x)1时,f(x)1满足题意.当k1时,对于x1,有f(x)x-1k(x-1),则f(x)1满足题意.当k1时,令G(x)=f(x)-k(x-1),x(0,+),则有G(x)=1x-x+1-k=-x2+(1-k)x+1x.由G(x)=0得,-x2+(1-k)x+1=0.解得x1=1-k-(1-k)2+421.当x(1,x2)时,G(x)0,故G(x)在1,x2)内单调递增.从而当x(1,x2)时,G(x)G(1)=0,即f(x)k(x-1),综上,k的取值范围是(-,1).

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|