ImageVerifierCode 换一换
格式:PPT , 页数:42 ,大小:392.89KB ,
文档编号:3931798      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-3931798.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(整式的加减全章复习课课件-.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

整式的加减全章复习课课件-.ppt

1、整式的加减整式的加减复习课复习课例例1 1 做大小两个长方体纸盒,尺寸如下做大小两个长方体纸盒,尺寸如下(单单位:位:cm)cm):(1 1)做这两个纸盒共用料多少平方厘米?)做这两个纸盒共用料多少平方厘米?(2 2)做大纸盒比做小纸盒多用料多少平方厘米?)做大纸盒比做小纸盒多用料多少平方厘米?解解:小纸盒的表面积是小纸盒的表面积是2ab+2bc+2ca平方厘米,平方厘米,大纸盒的表面积是大纸盒的表面积是6ab+8bc+6ca平方厘米平方厘米(1)做这两个纸盒共用料:单位()做这两个纸盒共用料:单位(cm2)(2)做大纸盒比做小纸盒多用料:单位()做大纸盒比做小纸盒多用料:单位(cm2)(2a

2、b+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab+8bc+6ca-2ab+2bc+2ca=4ab+6bc+4ac;21;2;21;xxxxyyxa a 32ab 32bca732ba yx2221 131 3167 543例例3.3.单项式单项式mm2 2n n2 2的系数是的系数是_,_,次数是次数是_,_,mm2 2n n2 2是是_次单项式次单项式.144例例4.若若-ax2yb+1是关于是关于x、y的五次单项式,且系的五次单项式,且系数为数为-1/2,

3、则,则a=_,b=_.1/223.1.3.3.211.2baFabEaDaCabBbaA 12.1.165.3222222 xyxDbabbaCxxBxxA;,常常数数项项是是项项式式,最最高高次次项项是是次次是是;,常常数数项项是是项项式式,最最高高次次项项是是次次是是_31)2(_2)1(223325 yxxxyyx 四四三三3xy 52四四三三322yx 31 指出下列代数式中哪些是单项式?哪些是指出下列代数式中哪些是单项式?哪些是多项式?哪些是整式?多项式?哪些是整式?例例1 1 评析:本题需应用单项式、多项式、整式的意义来解答。单评析:本题需应用单项式、多项式、整式的意义来解答。单项

4、式只含有项式只含有“乘积乘积”运算;多项式必须含有加法或减法运算运算;多项式必须含有加法或减法运算。不论单项式还是多项式,分母中都不能含有字母。不论单项式还是多项式,分母中都不能含有字母。解:解:zyxbamtsxxab322241,11,13,5,32,0单项式有:单项式有:zyxxab32241,5,0多项式有:多项式有:13,322mx整式有:整式有:zyxmxxab322241,13,5,32,0323232)3(xyyx与与22102)2(与与 2232)4(yxyx 与与323222)1(yxba与与;0;212213;123;527;642;523222222532 ababxx

5、xabababababxxxaaa222222223)2(233123)1(bbabbaayxxyxyyx yx2)233123()1(解:原式解:原式yx261)312()233()1(2222xyxyyxyx 解:原式解:原式223523xyyx 222222223)2(233123)1(bbabbaayxxyxyyx )22()()3()2(22bbbbaaa 解:原式解:原式ba2)22()()3()2(22bbbbaaa 解:原式解:原式24ba dcbadcba )()1(bacbac 2)(2)2(2343)2(43)3(22 xxxxcbacba )()4()2(3)22)(2

6、()3()123)(1(222222abbaabbaxxxx 234)1(2 xx原式原式解:解:224)2(abba 原式原式2)1(323,1222xxxx 化简:化简:23323222xxxx 解:原式解:原式22223323xxxx 32)233(222 xxxx3242 xx;2)643(31)14(3,1232 xxxxx的值,其中的值,其中求多项式求多项式2343123232 xxxx解:原式解:原式2312343223 xxxx1123523 xxx1)2(12)2(35)2(23 原式原式1243208 3239;12,12322 xxBxxA)12(2)123(222 xx

7、xxBA解:解:22412322 xxxx21224322 xxxx1472 xx2532 xx3422 xx342)253(22 xxxxA解:因为解:因为)253(34222 xxxxA所以所以25334222 xxxxA23543222 xxxxA12 xxA分钟分钟元元分钟分钟元元分钟分钟元元分钟分钟元元/)51.(/)51.(/)45.(/)45.(mnDmnCmnBmnA ,)%)(201(nmx mnx 45a0b 1.abbaa32;323bxax_23bxax23bxax323bxax)568()1468(22xxaxx568146822xxaxx)914()66()88(2

8、2xaxxx5)66(xamn)y3yn23)2(22xxxxymx与)323()2(22ynxyxxxymxynxyxxxymx323222yxxynxm3)22()3(2mn3)1(5.观察下列算式:12-02=1+0=122-12=2+1=332-22=3+2=542-32=4+3=7若用n表示自然数,请把你观察的规律用含n的式子表示 .第 三 个第 二 个 第 一 个6.第n个图案中有地砖 块.1.指出下各式的关系(相等、相反数、不确定):(1)a-b与b-a(2)-a-b与-(b-a)(3)(a-b)与b-a(4)(a-b)与b-a,93232的的值值是是若若 xx的的值值是是则则7

9、692 xx2.补充两题补充两题:nyx322yxm45145372abbpabanm322yx23yx 与 yzx2yx2 与 mn10mn32 与 5)(a5)3(与 yx23 与 25.0yx-125与1.已知:已知:与与 是同类项,求是同类项,求 m、n的的值值.2_3x3my3-1 _4x6yn+112mmx y23nx y222682aabbmabb4.4.如果如果2a2a2 2b bn+1n+1与与-4a-4am mb b3 3是同类项,则是同类项,则m=_m=_,n=_;n=_;5.5.若若5xy5xy2 2+axy+axy2 2=-2xy=-2xy2 2,则则a=_;a=_;

10、6.6.在在6xy-3x6xy-3x2 2-4x-4x2 2y-5yxy-5yx2 2+x+x2 2中没有同类项的项是中没有同类项的项是_2 332 276xy;2)643(31)14(3,1232 xxxxx的值,其中的值,其中求多项式求多项式2343123232 xxxx解:原式解:原式2312343223 xxxx1123523 xxx1)2(12)2(35)2(23 原式原式1243208 3239;12,12322 xxBxxA)12(2)123(222 xxxxBA解:解:22412322 xxxx21224322 xxxx1472 xx 典例典例 已知已知(x+1)(x+1)2

11、2+|y-1|=0+|y-1|=0,求下列式子的值。,求下列式子的值。2(xy-5xy2(xy-5xy2 2)-(3xy)-(3xy2 2-xy)-xy)解:根据非负数的性质,有解:根据非负数的性质,有x+1=0 x+1=0且且y-1=0,y-1=0,x=-1 x=-1,y=1y=1。则则2(xy-5xy2(xy-5xy2 2)-(3xy)-(3xy2 2-xy)-xy)=2xy-10 xy=2xy-10 xy2 2-3xy-3xy2 2+xy+xy =3xy-13xy =3xy-13xy2 2 当当x=-1x=-1,y=1y=1时,时,原式原式=3=3(-1)(-1)1-131-13(-1)

12、(-1)1 12 2 =-3+13=10=-3+13=10评析:根据已知条件,由非负数的性质,先求出评析:根据已知条件,由非负数的性质,先求出x x、y y的值,这是求值的关键,然后代入化简后的代数式,的值,这是求值的关键,然后代入化简后的代数式,进行求值。进行求值。思考:已知思考:已知A=3aA=3a2 2+2b+2b2 2,B=aB=a2 2-2a-b-2a-b2 2,求当,求当(b+4)(b+4)2 2+|a-3|=0+|a-3|=0时,时,A-BA-B的值。的值。a0b 4.4.abbaa32 典例典例1 1 已知已知2x+3y-1=02x+3y-1=0,求,求3-6x-9y3-6x-

13、9y的值。的值。解:解:2x+3y-1=0,2x+3y=12x+3y-1=0,2x+3y=1。3-6x-9y=3-(6x+9y)=3-3(2x+3y)=3-3 3-6x-9y=3-(6x+9y)=3-3(2x+3y)=3-31=01=0答:所求代数式的值为答:所求代数式的值为0 0。评析:学习了添括号法则后,对于某些求值问题灵活评析:学习了添括号法则后,对于某些求值问题灵活应用添括号的方法,可化难为易。如本题,虽然没有应用添括号的方法,可化难为易。如本题,虽然没有给出给出x x、y y的取值,但利用添括号和整体代入,求值问的取值,但利用添括号和整体代入,求值问题迎刃而解。注意体会和掌握这种方法

14、。题迎刃而解。注意体会和掌握这种方法。练习练习 已知已知3x3x2 2-x=1-x=1,求,求7-9x7-9x2 2+3x+3x的值。的值。解解 7-9x7-9x2 2+3x=7-(9x+3x=7-(9x2 2-3x)=7-3(3x-3x)=7-3(3x2 2-x)=7-3-x)=7-31=41=4(1)小明在实践课中做一个长方形模型,一边为小明在实践课中做一个长方形模型,一边为3a+2b,另一边比它小另一边比它小a-b,则长方形的周长为多少?则长方形的周长为多少?(2)大众超市出售一种商品其原价为大众超市出售一种商品其原价为a元,现三种调价元,现三种调价方案:方案:1.先提价格上涨先提价格上涨20%,再降价格再降价格20%2.先降价格先降价格20%,再提价格再提价格20%3.先提价格上涨先提价格上涨15%,再降价格再降价格15%问用这三种方案调价结果是否一样?最后是不是问用这三种方案调价结果是否一样?最后是不是都恢复了原价都恢复了原价?

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|