ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:1.60MB ,
文档编号:4068413      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4068413.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(中考数学:初中几何最值问题课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

中考数学:初中几何最值问题课件.ppt

1、中考总复习-初中几何最值问题中考数学2019最值问题高分突破如图,定点A,B在定直线l的同侧,在定直线l上找一动点P,使PA+PB的值最小.模型1高分突破 如图,定点A,B在定直线l的异侧,在定直线l上找一点P,使|PA-PB|的值最大.模型2高分突破如图,点N为定点,点M为动点,折叠图形后.求AB的最小值;求点A到BC距离的最小值.模型3轴对称求最值模型高分突破典例1如图,在ABC中,AB=AC,AD、CE是ABC的两条中线,点P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是()A.BC B.CEC.AD D.AC解析AB=AC,AD是中线,ADBC,点B,C关于直线AD对称.连

2、接CE交AD于点F,当点P与点F重合时,BP+EP的值最小,最小值为CE的长.故选B.BF轴对称求最值模型高分突破矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中点,点E在AB上,当CDE的周长最小时,点E的坐标为 .练习1轴对称求最值模型高分突破解析练习1轴对称求最值模型高分突破如图,在平面直角坐标系中,点A(1,5),B(3,-1),点M在x轴上运动,当AM-BM的值最大时,点M的坐标为 .典例2轴对称求最值模型高分突破解析典例2轴对称求最值模型高分突破练习2(2,-6)轴对称求最值模型高分突破解析练习2折叠(应用垂线段最短)求最值模型高分突破 如图,在

3、等腰ABC中,AB=BC=4,把ABC沿AC翻折得到ADC.若B=120,点P、E、F分别为AC、AD、DC上的任意一点,则PE+PF的最小值为 .典例332应用圆求最值模型高分突破 如图,ABC中,BAC=90 ,AC=12,AB=10,D是AC上一个动点,以AD为直径的 o交BD于E,则线段CE的最小值是_典例4,8折叠(应用圆)求最值模型高分突破如图,在RtABC中,C=90,AC=6,BC=8,点F在边AC上,且CF=2,点E为边BC上的动点,将CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值为 .在该问题中,先找到定点F,再以点F为圆心、CF的长为半径作圆,则点P在该

4、圆上运动,求点P到AB距离的最小值,即是求F上的点到AB的最小距离,过点F作AB的垂线,交F于一点,当点P与该点重合时,点P到AB的距离最小,据此求解即可.思路练习3折叠(应用圆)求最值模型高分突破解析练习3化立体图形为平面图形求最值模型高分突破 如图,圆锥的母线长为QA=8,底面圆的半径r=2,若一只小蚂蚁从A点出发,绕圆锥的侧面爬一周后又回到A点,则蚂蚁爬行的最短路径长是_典例582平面几何最值问题高分突破 已知,在平面直角坐标系中,A(1,5)、B(3,2),(1)若动点P(m,0),求m为何值时,PAB的周长最小?(2)若动点P在直线y=x上,求PA+PB最小时点P的坐标?(3)若动点

5、P(0,m),求m为何值时,|PB-PA|最大?(4)若动点P在直线y=x上,求|PA-PB|最大时点P的坐标?(5)若C(a,0),D(0,b),求四边形ABCD的周长最小值?(6)若C(0,a),D(0,a+4),求a为何值时,四边形ABCD的周长最小?练习4轴对称求最值模型高分突破如图,AOB=45,点P是AOB内一点,PO=5,点Q,R分别是OA,OB上的动点,则PQR周长的最小值为 .练习5轴对称求最值模型高分突破解析练习5轴对称最值模型高分突破如图,在平面直角坐标系中,AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)在OB上,点M是ON的中点,AOB=30,要使

6、PM+PN的值最小,则点P的坐标为 .定点M,N在定直线OA同侧,求PM+PN的最小值时,可作点N关于定直线OA的对称点N,再连接MN,根据两点之间线段最短,得到点P,M,N共线时,PM+PN的值最小,据此进行求解.思路随堂练习1轴对称最值模型高分突破解析随堂练习1轴对称求最值模型高分突破随堂练习2轴对称求最值模型高分突破随堂练习2轴对称求最值模型高分突破随堂练习2轴对称求最值模型高分突破随堂练习2轴对称求最值模型高分突破如图,菱形ABCD的边长为2,DAB=60,点E为BC的中点,点P是对角线AC上的动点,则PBE周长的最小值为 .随堂练习3轴对称求最值模型高分突破解析随堂练习3轴对称求最值模型高分突破如图,CD是O的直径,CD=4,ACD=20,点B为弧AD 的中点,点P是直径CD 上的一个动点,则PA+PB的最小值为 .2随堂练习4轴对称求最值模型高分突破解析随堂练习4折叠(应用圆)求最值模型高分突破 如图,在边长为2的菱形ABCD中,A=60,点M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则AC的最小值为 .随堂练习5折叠(应用圆)求最值模型高分突破解析随堂练习5

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|