ImageVerifierCode 换一换
格式:PPTX , 页数:21 ,大小:696.75KB ,
文档编号:4136847      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4136847.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(人教A版高中数学选修4 4课件圆的参数方程课件 精心整理.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学选修4 4课件圆的参数方程课件 精心整理.pptx

1、第二讲第二讲 参数方程参数方程1、参数方程的概念、参数方程的概念(1)在取定的坐标系中,如果曲线上任意一点的坐)在取定的坐标系中,如果曲线上任意一点的坐标标x、y都是某个变数都是某个变数t的函数,即的函数,即并且对于并且对于t的每一个允许值,由上述方程组所确定的点的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程组就叫做这)都在这条曲线上,那么上述方程组就叫做这条曲线的条曲线的参数方程参数方程,联系,联系x、y之间关系的变数叫做之间关系的变数叫做参参变数变数,简称,简称参数参数。参数方程的参数可以是有物理、几。参数方程的参数可以是有物理、几何意义的变数,也可以是没有

2、明显意义的变数。何意义的变数,也可以是没有明显意义的变数。)()(tgytfx(2)相对于参数方程来说,前面学过的直接给出曲相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的线上点的坐标关系的方程,叫做曲线的普通方程普通方程。即的函数都是纵坐标、的横坐标点根据三角函数定义圆半径为的坐标为如果点,),(0yxPOPPryxPsincosryrx并且对于并且对于 的每一个允许值的每一个允许值,由方程组由方程组所确定的点所确定的点P(x,y),都在圆都在圆O上上.o思考思考1:圆心为原点,半径为圆心为原点,半径为r 的圆的参数方程?的圆的参数方程?-555-5rp0P(x,y

3、)我们把方程组叫做圆心在原点、半径为我们把方程组叫做圆心在原点、半径为r的圆的的圆的参数方程,参数方程,是参数是参数.观察观察1sincos11ryrx?,)()(),(:22221那么参数方程是什么呢为的圆的标准方程、半径为圆心为思考rbyaxrbaO观察观察25-5-55v(a,b)oP(x,y)O1),(111yxP(a,b)r11111(,),(,)(,),O a brOrOP x yOP x y圆心为、半径为 的圆可以看作由圆心为原点、半径为 的圆平移得到 设圆上任意一点是圆 上的点平移得到的由平移公式 有又又所以所以sincosrbyraxbyyaxx11(3)参数方程与普通方程的

4、互化)参数方程与普通方程的互化sincosryrxx x2 2+y+y2 2=r=r2 2222)()(rbyaxsincosrbyrax注:注:1、参数方程的特点是没有直接体现曲线上点的、参数方程的特点是没有直接体现曲线上点的横、纵坐标之间的关系,而是分别体现了点的横、纵横、纵坐标之间的关系,而是分别体现了点的横、纵坐标与参数之间的关系。坐标与参数之间的关系。2、参数方程的应用往往是在、参数方程的应用往往是在x与与y直接关系很难或不直接关系很难或不可能体现时,通过参数建立间接的联系。可能体现时,通过参数建立间接的联系。已知曲线C的参数方程是(1)判断点(0,1),(5,4)是否在上.(2)已

5、知点(,a)在曲线上,求a.1232tytx例例1 1、已知圆方程已知圆方程x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0,将它,将它化为参数方程。化为参数方程。解:解:x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0化为标准方程,化为标准方程,(x+1x+1)2 2+(y-3y-3)2 2=1=1,参数方程为参数方程为sin3cos1yx(为参数为参数)练习:练习:1.填空:已知圆填空:已知圆O的参数方程是的参数方程是sin5cos5yx(0 2 )5 5 32,22QQ如果圆上点 所对应的坐标是则点 对应的参数 等于如果圆上点如果圆上点P所对应的参数所

6、对应的参数 ,则点,则点P的坐标是的坐标是35235,25322cos2.()2sin.,2.,2.xyABCD 选择题:参数方程为参数 表示的曲线是圆心在原点 半径为 的圆圆心不在原点 但半径为 的圆不是圆以上都有可能A半径为表示圆心为参数方程、填空题sin2cos2)1(:3yx的圆,化为标准方程为(2,-2)112222yxsin22cos21yx化为参数方程为把圆方程0142)2(22yxyxxMPAyO解解:设设M的坐标为的坐标为(x,y),可设点可设点P坐标为坐标为(4cos,4sin)点点M的轨迹是以的轨迹是以(6,0)为圆心、为圆心、2为半径的圆。为半径的圆。由中点公式得由中点

7、公式得:点点M的轨迹方程为的轨迹方程为x=6+2cosy=2sinx=4cosy=4sin圆圆x2+y2=16的参数方程为的参数方程为例例2.如图如图,已知点已知点P是圆是圆x2+y2=16上的一个动点上的一个动点,点点A是是x轴上的定点轴上的定点,坐标为坐标为(12,0).当点当点P在圆在圆 上运动时上运动时,线段线段PA中点中点M的轨迹是什么的轨迹是什么?观察观察3解解:设设M的坐标为的坐标为(x,y),点点M的轨迹是以的轨迹是以(6,0)为圆心、为圆心、2为半径的圆。为半径的圆。由中点坐标公式得由中点坐标公式得:点点P的坐标为的坐标为(2x-12,2y)(2x-12)2+(2y)2=16

8、即即 M的轨迹方程为的轨迹方程为(x-6)2+y2=4点点P在圆在圆x2+y2=16上上xMPAyO例例2.如图如图,已知点已知点P是圆是圆x2+y2=16上的一个动点上的一个动点,点点A是是x轴上的定点轴上的定点,坐标为坐标为(12,0).当点当点P在圆在圆 上运动时上运动时,线段线段PA中点中点M的轨迹是什么的轨迹是什么?例例3、已知点已知点P(x,y)是圆)是圆x2+y2-6x-4y+12=0上动上动点,求(点,求(1)x2+y2的最值,的最值,(2)x+y的最值,的最值,(3)P到直线到直线x+y-1=0的距离的距离d的最值。的最值。解:圆解:圆x2+y2-6x-4y+12=0即(即(

9、x-3)2+(y-2)2=1,用参数方程表示为用参数方程表示为sin2cos3yx由于点由于点P在圆上,所以可设在圆上,所以可设P(3+cos,2+sin)(1)x2+y2=(3+cos)2+(2+sin)2=14+4 sin+6cos=14+2 sin(+).13(其中其中tan =3/2)x2+y2的最大值为的最大值为14+2 ,最小值为,最小值为14-2 。1313(2)x+y=3+cos+2+sin=5+sin(+)24 x+y的最大值为的最大值为5+,最小值为,最小值为5-。22(3)2)4sin(2421sin2cos3d显然当显然当sin(+)=1时,时,d取最大值,最取最大值,

10、最小值,分别为小值,分别为 ,。4122221例例4、将下列参数方程化为普通方程:将下列参数方程化为普通方程:sin3cos32yx(1)2cossinyx(2)(3)x=t+1/tx=t+1/ty=ty=t2 2+1/t+1/t2 2(1)()(x-2)2+y2=9(2)y=1-2x2(-1x1)(3)x2-y=2(X2或或x-2)步骤:步骤:(1)消参;)消参;(2)求定义域。)求定义域。小小 结结:1、圆的参数方程、圆的参数方程2、参数方程与普通方程的概念、参数方程与普通方程的概念3、圆的参数方程与普通方程的互化、圆的参数方程与普通方程的互化4、求轨迹方程的三种方法:相关点点问、求轨迹方

11、程的三种方法:相关点点问题(代入法);题(代入法);参数法;定义法参数法;定义法5、求最值、求最值)(2110012为参数,表示时间、tgthytx)(4132,41,32),(2为参数以时间的轨迹的参数方程为于是点则,动点的位置是、设经过时间ttytxMtytxyxMtxyACBO6)23(sin)21(cos)23(sin)21(cossin)1(cos)sin,(cos)23,21(),23,21(),0,1(,)(sincos,13222222222MCMBMAMCBAyxxCBABC则设点的坐标分别为为参数是那么外接圆的参数方程轴对称关于,时点如图的平面直角坐标系,建立的外接圆的半径为、解:不妨设双曲线;)(一段抛物线;为端点的以)(直线;、解,43)2,1(),2,1(,1,1,22,072)1(;4222yxxxyyx)(sincos)2()(113)1(5442为参数为参数、ayaxttyttx

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|