ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:595.15KB ,
文档编号:4199707      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4199707.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt

1、Modelling of an Inductively Coupled Plasma Torch:first stepAndr P.1,Clain S.4,Dudeck M.3,Izrar B.2,Rochette D1,Touzani R3,Vacher D.11.LAEPT,Clermont University,France2.ICARE,Orlans University,France3.Institut Jean Le Rond dAlembert,University of Paris 6,France4.LM,Clermont University,FranceCompositi

2、on in molar fractionMars97%CO2;3%N2Titan97%N2;2%CH4;1%Ar ICP Torch:atmospheric pressureLow flow of gazAssumptionsThermal equlibrium Chemical equilibriumOptical Thin plasmaSimple Case!CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative lo

3、ss termInteraction PotentialsCompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsChemical and Thermal equilibrium:Gibbs Free Energy minimisationDalton LawElectrical NeutralityChemical species:MarsMonatomic

4、species(11):C,C-,C+,C+,N,N+,N+,O,O-,O+,O+Diatomic species(18):C2,C2-,C2+,CN,CN-,CN+,CO,CO-,CO+,N2,N2-,N2+,NO,NO-,NO+,O2,O2-,O2+Poly_atomic species(23):C2N,C2N2,C2O,C3,C3O2,C4,C4N2,C5,CNN,CNO,CO2,CO2-,N2O,N2O3,N2O4,N2O5,N2O+,N3,NCN,NO2,NO2-,NO3,O3 e-,solid phase:graphiteTitan:Monatomic species(13):Ar

5、,Ar+,Ar+,C,C-,C+,C+,H,H+,H-,N,N+,N+,Diatomic Species(18):C2,C2-,C2+,CN,CN-,CN+,CO,CO-,CO+,N2,N2-,N2+,NO,NO-,NO+,O2,O2-,O2+Poly_atomic species(26):C2H,C2H2,C2H4,C2N,C2N2,C3,C4,C4N2,C5,CH2,CH3,CH4,CHN,CNN,H2N,H2N2,H3N,H4N2,N3,NCN,H3+,NH4+,C2H3,C2H5,C2H6,HCCNe-,solid phase:graphite10-610-410-2100150030

6、0045006000NCC+e-NCNNHCHC2C2NC2HC2H2HCHNArC(S)H2HN2Temperature(K)Fraction molaire10-610-410-21001500300045006000CNe-NO+CNO2NNOOO2CON2CO2Temperature(K)Fraction molaireTo calculate in gas phase,we consider the temperature range 3000;15000MarsTitan10181020102210243000500070009000110001300015000C2NO2C2ON

7、O+CNCO+CO2O2N2NON+O+C+e-NCCOOTemperature(K)Concentration(m-3)MarsTitan10181020102210243000500070009000110001300015000N+NCNCHC3C2HC2CHNH2NHN2+Ar+H+C+e-ArCNCHNN2Temperature(K)Concentration(m-3)CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadi

8、ative loss termInteraction Potentials*Intensities calculation(Boltzmann distribution)MarsLine CI 2582.9 10-10 m10-510-310-11011031053000500070009000110001300015000TitanMarsTemperature(K)Intensity(W/m3/sr)CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicP

9、ropertiesRadiative loss termInteraction PotentialsThermodynamic properties Massic density:Internal energy:e00.050.100.153000600090001200015000MarsTitanTemperature(K)Massic density(kg/m3)00.5x1081.0 x1083000500070009000110001300015000TitanMarsTemperature(K)Internal energy(J/kg)CompositionSpectral lin

10、es,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsPotential interactionsCharged-Charged:Shielded with Debye length Coulombian potential Neutral-Neutral:Lennard Jones Potential(evalaute and combining rules)Charged-Neutral:Dipole

11、 and charge transferElectrons-neutral:Bibliography and estimationsTransport coefficients:Chapman-Enskog methodElectrical conductivity:third orderViscosity coefficient:fourth orderTotal thermal conductivity k:summation of four termstranslational thermal conductivity due to the electrons,translational

12、 thermal conductivity due to the heavy species particles,internal thermal conductivity,chemical reaction thermal conductivity.0.000010.0010.11010003000500070009000110001300015000MarsTitanTemperature(K)Electrical Conductivity(S/m)0.000100.000150.000203000500070009000110001300015000TitanMarsTemperatur

13、e(K)Viscosity(Pa.s)012343000600090001200015000TitanMarsTemperature(K)Thermal Conductivity(W/m/K)Axisymmetry LTE model for inductive plasma torches LTE flow field equations USzUrGrUrGzUrFrUrFtrUzrzr RadJoulerzrrzzzzzrzrrrzrrrzzzzrzzrrrzrrrzrrPrPuurfrfPuUSqUGqUGPeuuuPuuuuUFPeuuuuuPuuUFeuuuU222000,U:co

14、nservative variable vector Fr(U),Fz(U):convective fluxes Gr(U),Gz(U):diffusive fluxes S(U):source termrurururuzuruzururuzuzuzurururuzururrzrrzrrzzzzrzrzzrrrzrrr232322322,Equation of state of the plasma considered:,PP with:internal energy defined by:221ueViscous termsrTkqzTkqrz,Conductive heat fluxes

15、Lorentz forceBJRe,0f,fzr21Joule heatingEJEPJoule0Re21Radiative loss term PRadPhysical model:assumptions-Classical torch geometry axisymmetric geometry-Local Thermodynamic Equilibrium(LTE)conditions for the plasma-Unsteady state,laminar,swirling plasma flow(tangential component)-Optically thin plasma

16、-Negligible viscous work and displacement currentMHD induction equations00JEJH,B,EBJ,Hi01JEEii B:magnetic induction H:magnetic field E:electric field J and J0:current density and source current density:magnetic permeability:electric conductivityEquations formulated in terms of electric field ENumeri

17、cal methodHydrodynamics(three steps)To obtain an approximation of the solution U on each cell,we use a fractional step technique coupling the finite volume method and the finite element method:First step:To compute the convective fluxes,we use a finite volume scheme with multislope MUSCL reconstruct

18、ion where the fluxes are calculated using a HLLC scheme.Second step:We use a Runge Kutta method to integrate the source terms.Third step:We use a finite element method to evaluate the diffusive contribution.ElectromagneticTo solve the partial differential equation,we use a standard finite element me

19、thod with a standard triangulation of the domain and the use of a piecewise linear approximation.Using the cylindrical coordinates(r,z)and assuming-invariance we obtain:EEJiEizErErrr with 1022,Basic datacompositionIntensity calculationThermodynamic propertiesFirst estimation of interaction potentialsFirst estimation of transport coefficients FutureUpgrade the interaction potentialsEstimate the accuracy need to calculate the transport coefficientsRadiative lossUnderstand the energy transfer from the inductive coilsModify the ICP torch

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|