Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt

上传人(卖家):晟晟文业 文档编号:4199707 上传时间:2022-11-19 格式:PPT 页数:19 大小:595.15KB
下载 相关 举报
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第1页
第1页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第2页
第2页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第3页
第3页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第4页
第4页 / 共19页
Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、Modelling of an Inductively Coupled Plasma Torch:first stepAndr P.1,Clain S.4,Dudeck M.3,Izrar B.2,Rochette D1,Touzani R3,Vacher D.11.LAEPT,Clermont University,France2.ICARE,Orlans University,France3.Institut Jean Le Rond dAlembert,University of Paris 6,France4.LM,Clermont University,FranceCompositi

2、on in molar fractionMars97%CO2;3%N2Titan97%N2;2%CH4;1%Ar ICP Torch:atmospheric pressureLow flow of gazAssumptionsThermal equlibrium Chemical equilibriumOptical Thin plasmaSimple Case!CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative lo

3、ss termInteraction PotentialsCompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsChemical and Thermal equilibrium:Gibbs Free Energy minimisationDalton LawElectrical NeutralityChemical species:MarsMonatomic

4、species(11):C,C-,C+,C+,N,N+,N+,O,O-,O+,O+Diatomic species(18):C2,C2-,C2+,CN,CN-,CN+,CO,CO-,CO+,N2,N2-,N2+,NO,NO-,NO+,O2,O2-,O2+Poly_atomic species(23):C2N,C2N2,C2O,C3,C3O2,C4,C4N2,C5,CNN,CNO,CO2,CO2-,N2O,N2O3,N2O4,N2O5,N2O+,N3,NCN,NO2,NO2-,NO3,O3 e-,solid phase:graphiteTitan:Monatomic species(13):Ar

5、,Ar+,Ar+,C,C-,C+,C+,H,H+,H-,N,N+,N+,Diatomic Species(18):C2,C2-,C2+,CN,CN-,CN+,CO,CO-,CO+,N2,N2-,N2+,NO,NO-,NO+,O2,O2-,O2+Poly_atomic species(26):C2H,C2H2,C2H4,C2N,C2N2,C3,C4,C4N2,C5,CH2,CH3,CH4,CHN,CNN,H2N,H2N2,H3N,H4N2,N3,NCN,H3+,NH4+,C2H3,C2H5,C2H6,HCCNe-,solid phase:graphite10-610-410-2100150030

6、0045006000NCC+e-NCNNHCHC2C2NC2HC2H2HCHNArC(S)H2HN2Temperature(K)Fraction molaire10-610-410-21001500300045006000CNe-NO+CNO2NNOOO2CON2CO2Temperature(K)Fraction molaireTo calculate in gas phase,we consider the temperature range 3000;15000MarsTitan10181020102210243000500070009000110001300015000C2NO2C2ON

7、O+CNCO+CO2O2N2NON+O+C+e-NCCOOTemperature(K)Concentration(m-3)MarsTitan10181020102210243000500070009000110001300015000N+NCNCHC3C2HC2CHNH2NHN2+Ar+H+C+e-ArCNCHNN2Temperature(K)Concentration(m-3)CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadi

8、ative loss termInteraction Potentials*Intensities calculation(Boltzmann distribution)MarsLine CI 2582.9 10-10 m10-510-310-11011031053000500070009000110001300015000TitanMarsTemperature(K)Intensity(W/m3/sr)CompositionSpectral lines,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicP

9、ropertiesRadiative loss termInteraction PotentialsThermodynamic properties Massic density:Internal energy:e00.050.100.153000600090001200015000MarsTitanTemperature(K)Massic density(kg/m3)00.5x1081.0 x1083000500070009000110001300015000TitanMarsTemperature(K)Internal energy(J/kg)CompositionSpectral lin

10、es,Spectroscopy measurementsTransport CoefficientsModellingThermodynamicPropertiesRadiative loss termInteraction PotentialsPotential interactionsCharged-Charged:Shielded with Debye length Coulombian potential Neutral-Neutral:Lennard Jones Potential(evalaute and combining rules)Charged-Neutral:Dipole

11、 and charge transferElectrons-neutral:Bibliography and estimationsTransport coefficients:Chapman-Enskog methodElectrical conductivity:third orderViscosity coefficient:fourth orderTotal thermal conductivity k:summation of four termstranslational thermal conductivity due to the electrons,translational

12、 thermal conductivity due to the heavy species particles,internal thermal conductivity,chemical reaction thermal conductivity.0.000010.0010.11010003000500070009000110001300015000MarsTitanTemperature(K)Electrical Conductivity(S/m)0.000100.000150.000203000500070009000110001300015000TitanMarsTemperatur

13、e(K)Viscosity(Pa.s)012343000600090001200015000TitanMarsTemperature(K)Thermal Conductivity(W/m/K)Axisymmetry LTE model for inductive plasma torches LTE flow field equations USzUrGrUrGzUrFrUrFtrUzrzr RadJoulerzrrzzzzzrzrrrzrrrzzzzrzzrrrzrrrzrrPrPuurfrfPuUSqUGqUGPeuuuPuuuuUFPeuuuuuPuuUFeuuuU222000,U:co

14、nservative variable vector Fr(U),Fz(U):convective fluxes Gr(U),Gz(U):diffusive fluxes S(U):source termrurururuzuruzururuzuzuzurururuzururrzrrzrrzzzzrzrzzrrrzrrr232322322,Equation of state of the plasma considered:,PP with:internal energy defined by:221ueViscous termsrTkqzTkqrz,Conductive heat fluxes

15、Lorentz forceBJRe,0f,fzr21Joule heatingEJEPJoule0Re21Radiative loss term PRadPhysical model:assumptions-Classical torch geometry axisymmetric geometry-Local Thermodynamic Equilibrium(LTE)conditions for the plasma-Unsteady state,laminar,swirling plasma flow(tangential component)-Optically thin plasma

16、-Negligible viscous work and displacement currentMHD induction equations00JEJH,B,EBJ,Hi01JEEii B:magnetic induction H:magnetic field E:electric field J and J0:current density and source current density:magnetic permeability:electric conductivityEquations formulated in terms of electric field ENumeri

17、cal methodHydrodynamics(three steps)To obtain an approximation of the solution U on each cell,we use a fractional step technique coupling the finite volume method and the finite element method:First step:To compute the convective fluxes,we use a finite volume scheme with multislope MUSCL reconstruct

18、ion where the fluxes are calculated using a HLLC scheme.Second step:We use a Runge Kutta method to integrate the source terms.Third step:We use a finite element method to evaluate the diffusive contribution.ElectromagneticTo solve the partial differential equation,we use a standard finite element me

19、thod with a standard triangulation of the domain and the use of a piecewise linear approximation.Using the cylindrical coordinates(r,z)and assuming-invariance we obtain:EEJiEizErErrr with 1022,Basic datacompositionIntensity calculationThermodynamic propertiesFirst estimation of interaction potentialsFirst estimation of transport coefficients FutureUpgrade the interaction potentialsEstimate the accuracy need to calculate the transport coefficientsRadiative lossUnderstand the energy transfer from the inductive coilsModify the ICP torch

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(Modelling-of-an-Inductively-Coupled-Plasma-Torch-first-step-电感耦合等离子体炬的第一步建模课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|