ImageVerifierCode 换一换
格式:PPT , 页数:14 ,大小:666.90KB ,
文档编号:4293298      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4293298.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(二重积分的计算方法利用直角坐标计算课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

二重积分的计算方法利用直角坐标计算课件.ppt

1、返回返回上页上页下页下页目录目录第二节第二节 二重积分的计算方法二重积分的计算方法 第八章第八章(Calculation of Double Integral)一、利用直角坐标计算二重积分一、利用直角坐标计算二重积分二、利用极坐标计算二重积分二、利用极坐标计算二重积分三、小结与思考练习三、小结与思考练习11/26/20221返回返回上页上页下页下页目录目录解法解法:类似定积分解决问题的思想:复习复习.求曲顶柱体的体积求曲顶柱体的体积 I给定曲顶柱体:0),(yxfz底:底:xoy 面上的闭区域 D顶顶:连续曲面侧面:侧面:以 D 的边界为准线,母线平行于 z 轴的柱面求体积.“大化小,常代变,

2、近似和,求极限”D),(yxfz(,)dDf x ynkkkkfI10),(lim记作(,)d.Df x yxdy记作11/26/20222返回返回上页上页下页下页目录目录一、利用直角坐标计算二重积分一、利用直角坐标计算二重积分xbad 曲顶柱体的底底为bxaxyxyxD)()(),(21任取0,a bx 平面0 xx 故曲顶柱体体积曲顶柱体体积为DyxfVd),(0021()()00()(,)dxxAf xyyx截面积截面积为21()()(,)dxxxfyyd()baxAx截柱体的)(2xy)(1xyzxyoab0 xD设曲顶柱体的顶顶为(,)0zf x yX型区域型区域11/26/2022

3、3返回返回上页上页下页下页目录目录(3)求二次积分(注意不要代错了变元)求二次积分(注意不要代错了变元)11/26/20224返回返回上页上页下页下页目录目录ydcxo)(2yx)(1yxyydcd dycyxyyxD),()(),(21同样,若曲顶柱的底为则其体积可按如下两次积分计算DyxfVd),(21()()(,)dyyf xxy21()()(,)dyyf xxydcydY型区域型区域11/26/20225返回返回上页上页下页下页目录目录oxyDyxyxfdd),(为计算方便,可选择积分序选择积分序,必要时还可以交换积分序交换积分序.)(2xyxoyDba)(1yx)(2yxdc则有x)

4、(1xyyyyxfxxd),()()(21baxdxyxfyyd),()()(21dcyd(2)若积分域较复杂,可将它分成若干1D2D3DX-型域或Y-型域,321DDDD则 说明说明:(1)若积分区域既是X型区域又是Y 型区域,11/26/20226返回返回上页上页下页下页目录目录),(yxf2),(),(),(yxfyxfyxf2),(),(yxfyxf),(1yxf),(2yxf均非负均非负DDyxyxfyxyxfdd),(dd),(1在D上变号变号时,因此上面讨论的累次积分法仍然有效.由于Dyxyxfdd),(2当被积函数补充说明(课本没有):补充说明(课本没有):11/26/2022

5、7返回返回上页上页下页下页目录目录,dd)1ln(2yxyyxID其中D 由,42xy1,3xxy所围成.oyx124xyxy32D1D1x解解:令)1ln(),(2yyxyxf21DDD(如图所示)显然,1上在D),(),(yxfyxf,2上在D),(),(yxfyxfyxyyxIDdd)1ln(120yxyyxDdd)1ln(224例例3.计算11/26/20228返回返回上页上页下页下页目录目录,dDyx其中D 是抛物线xy 2所围成的闭区域.解解:为计算简便,先对 x 后对 y 积分,:Dxyx dDyxd21dy212221d2yyxyy2152d)2(21yyyy845Dxy22

6、xy214oyxy22yxy21y2y2y2 xy及直线则 例例4 计算11/26/20229返回返回上页上页下页下页目录目录axy2解:解:原式ay0daay2d22xaxy22yaax例例5.给定的次序.)0(d),(d20222ayyxfxIaaxxaxay0d2222d),(yaaayxyxfayaaxyxf222d),(aayxyxf222d),(ayx22a2a2aoxy改变积分11/26/202210返回返回上页上页下页下页目录目录例例6.设,1,0)(Cxf且,d)(10Axxf求.d)()(d110yyfxfxIx提示提示:交换积分顺序后,x,y互换oyx1xy 1yxIxy

7、fxfyd)()(010d yyyfxfxd)()(010d xI2yyfxfxxd)()(d110yyfxfxd)()(010d x10d xyyfxfd)()(101010d)(d)(yyfxxf2A11/26/202211返回返回上页上页下页下页目录目录例例7 求两个底圆半径为R 的直角圆柱面所围的体积.xyzRRo解解:设两个直圆柱方程为,222Ryx利用对称性,考虑第一卦限部分,其曲顶柱体的顶为则所求体积为yxxRVDdd822220dxRyxxRRd)(80223316R222Rzx22xRz 00:),(22RxxRyDyxxxRRd8022222Ryx222RzxD11/26/202212返回返回上页上页下页下页目录目录内容小结内容小结直角坐标系情形直角坐标系情形:若积分区域为)()(,),(21xyyxybxayxD则)()(21d),(dd),(xyxybaDyyxfxyxf 若积分区域为)()(,),(21yxxyxdycyxD则xy)(1yxx Ddc)(2yxx)()(21d),(dd),(yxyxdcDxyxfyyxf)(1xyy)(2xyy xybaD11/26/202213返回返回上页上页下页下页目录目录课外练习课外练习习题习题82 第一次作业第一次作业 2;3(3)(4);4(2)(4)(6);6;11/26/202214

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|