ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:680.50KB ,
文档编号:431121      下载积分:8 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-431121.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(金钥匙文档)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(大学精品课件:高等数学第十一章习题课.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

大学精品课件:高等数学第十一章习题课.ppt

1、,习题课,级数的收敛、求和与展开,机动 目录 上页 下页 返回 结束,三、幂级数和函数的求法,四、函数的幂级数和付式级数 展开法,一、数项级数的审敛法,二、求幂级数收敛域的方法,第十一章,(在收敛域内进行),基本问题:判别敛散;,求收敛域;,求和函数;,级数展开.,为傅立叶级数.,为傅氏系数) 时,时为数项级数;,时为幂级数;,机动 目录 上页 下页 返回 结束,一、数项级数的审敛法,1. 利用部分和数列的极限判别级数的敛散性,2. 正项级数审敛法,必要条件,发 散,满足,比值审敛法,根值审敛法,收 敛,发 散,不定,比较审敛法,用它法判别,积分判别法,部分和极限,机动 目录 上页 下页 返回

2、 结束,3. 任意项级数审敛法,为收敛级数,Leibniz判别法: 若,且,则交错级数,收敛 ,概念:,且余项,机动 目录 上页 下页 返回 结束,例1. 若级数,均收敛 , 且,证明级数,收敛 .,证:,则由题设,收敛,收敛,收敛,练习题: P257 1 ; 2 ; 3 ; 4 ; 5,机动 目录 上页 下页 返回 结束,解答提示:,P257 题2. 判别下列级数的敛散性:,提示: (1),据比较判别法, 原级数发散 .,因调和级数发散,机动 目录 上页 下页 返回 结束,利用比值判别法, 可知原级数发散.,用比值法, 可判断级数,因 n 充分大时,原级数发散 .,用比值判别法可知:,时收敛

3、 ;,时, 与 p 级数比较可知,时收敛;,时发散.,再由比较法可知原级数收敛 .,时发散.,发散,收敛,机动 目录 上页 下页 返回 结束,P257 题3. 设正项级数,和,也收敛 .,提示: 因,存在 N 0,又因,利用收敛级数的性质及比较判敛法易知结论正确.,都收敛, 证明级数,当n N 时,机动 目录 上页 下页 返回 结束,P257 题4. 设级数,收敛 , 且,是否也收敛?说明理由.,但对任意项级数却不一定收敛 .,问级数,提示: 对正项级数,由比较判别法可知,级数,收敛 ,收敛,级数,发散 .,例如, 取,机动 目录 上页 下页 返回 结束,P257 题5.讨论下列级数的绝对收敛

4、性与条件收敛性:,提示: (1),P 1 时, 绝对收敛 ;,0 p 1 时, 条件收敛 ;,p0 时, 发散 .,(2) 因各项取绝对值后所得强级数,原级数绝对收敛 .,故,机动 目录 上页 下页 返回 结束,因,单调递减, 且,但,所以原级数仅条件收敛 .,由Leibniz判别法知级数收敛 ;,机动 目录 上页 下页 返回 结束,因,所以原级数绝对收敛 .,机动 目录 上页 下页 返回 结束,二、求幂级数收敛域的方法, 标准形式幂级数: 先求收敛半径 R ,再讨论, 非标准形式幂级数,通过换元转化为标准形式,直接用比值法或根值法,处的敛散性 .,P257 题7. 求下列级数的敛散区间:,练

5、习:,机动 目录 上页 下页 返回 结束,解:,当,因此级数在端点发散 ,时,时原级数收敛 .,故收敛区间为,机动 目录 上页 下页 返回 结束,解: 因,故收敛区间为,级数收敛;,一般项,不趋于0,级数发散;,机动 目录 上页 下页 返回 结束,例2.,解: 分别考虑偶次幂与奇次幂组成的级数,极限不存在, 原级数 =, 其收敛半径,注意:,机动 目录 上页 下页 返回 结束, 求部分和式极限,三、幂级数和函数的求法,求和, 映射变换法,逐项求导或求积分,对和式积分或求导,直接求和: 直接变换,间接求和: 转化成幂级数求和, 再代值,求部分和等, 初等变换法: 分解、套用公式,(在收敛区间内)

6、, 数项级数 求和,机动 目录 上页 下页 返回 结束,例3. 求幂级数,法1 易求出级数的收敛域为,机动 目录 上页 下页 返回 结束,法2,先求出收敛区间,则,设和函数为,机动 目录 上页 下页 返回 结束,练习:,解: (1),显然 x = 0 时上式也正确,故和函数为,而在,x0,P258 题8. 求下列幂级数的和函数:,级数发散,机动 目录 上页 下页 返回 结束,(4),机动 目录 上页 下页 返回 结束,显然 x = 0 时, 和为 0 ;,根据和函数的连续性 , 有,x = 1 时,级数也收敛 .,即得,机动 目录 上页 下页 返回 结束,练习:,解: 原式=,的和 .,P25

7、8 题9(2). 求级数,机动 目录 上页 下页 返回 结束,四、函数的幂级数和付式级数展开法, 直接展开法, 间接展开法,练习:,1. 将函数,展开成 x 的幂级数., 利用已知展式的函数及幂级数性质, 利用泰勒公式,解:,机动 目录 上页 下页 返回 结束,1. 函数的幂级数展开法,2. 设, 将 f (x)展开成,x 的幂级数 ,的和. ( 01考研 ),解:,于是,并求级数,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,2. 函数的付式级数展开法,系数公式及计算技巧;,收敛定理;,延拓方法,练习:,上的表达式为,将其展为傅氏级数 .,P258 题11. 设 f (x)是周期为2的函数,它在,解答提示,机动 目录 上页 下页 返回 结束,思考: 如何利用本题结果求级数,根据付式级数收敛定理 , 当 x = 0 时, 有,提示:,P257 6 (2); 7 (3); 8 (2),(3) ; 9(1) ; 10 (1) ; 12,作业,机动 目录 上页 下页 返回 结束,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|