ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:362.98KB ,
文档编号:4364991      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4364991.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文([大一高数课件]一阶线性微分方程07.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

[大一高数课件]一阶线性微分方程07.ppt

1、6.2 一阶微分方程一阶微分方程一、一、一、一、形如形如)()(ygxfdxdy这类方程的解法是:首先把原方程改写成这类方程的解法是:首先把原方程改写成)0)()()(ygdxxfygdyxy即把变量即把变量和和分离开来,然后两边积分分离开来,然后两边积分 dxxfygdy)()(即可得到原方程的通解即可得到原方程的通解 例例1 1 求解微分方程求解微分方程.2的通解的通解xydxdy 解解分离变量分离变量,2xdxydy 两端积分两端积分,2 xdxydyCxylnln2.2为所求通解为所求通解xcey 例例2 求微分方程求微分方程 22yxyxyxdxdy满足初始条件满足初始条件 2|0

2、xy的特解的特解 解解 原方程可化为原方程可化为dxxxdyyy2211两边积分得两边积分得Cxyln21)1ln(21)1ln(2122Cxyln)1ln()1ln(22)1(122xCy由初始条件由初始条件 2|0 xy得得5C故方程的特解故方程的特解4522 xy齐次微分方程齐次微分方程 形如形如)(xydxdy的方程称为齐次微分方程的方程称为齐次微分方程解这类方程,可先进行变量代换,令解这类方程,可先进行变量代换,令 xyu 即即 uxy,将,将 uxy 两边对两边对x求导数,求导数,有有 dxduxudxdy代入微分方程得代入微分方程得)(udxduxu分离变量后分离变量后 xdxu

3、udu)(两边积分两边积分 xdxuudu)(求出积分后,再用求出积分后,再用 xy代替代替 u便得到原齐次方程通解便得到原齐次方程通解 例例3 求微分方程求微分方程 xyxydxdytan的通解的通解 解 这是一个齐次微分方程,令 xyu 得得 uudxduxutan即即udxduxtan分离变量,得分离变量,得xdxudu cot两边积分,得两边积分,得CxulnlnsinlnCxu sinCxxysin例例4 求微分方程求微分方程 的特解的特解yxxyy2)1(,y uxyuudxduxu1xdxudu xdxudu22Cxuln22Cxxyln222把初始条件把初始条件 2|1xy代入

4、上式,得代入上式,得 4C于是齐次方程的特解为于是齐次方程的特解为 2224ln2xxxy例例5 求解方程求解方程2)(yxdxdy解解 令令yxz则则dxdydxdz1代入原方程得代入原方程得21zdxdzdxzdz21Cxzarctan故原方程通解为故原方程通解为Cxyx)arctan()()(xQyxPdxdy 一阶线性微分方程一阶线性微分方程的标准形式的标准形式:,0)(xQ当当上方程称为上方程称为齐次的齐次的.上方程称为上方程称为非齐次的非齐次的.,0)(xQ当当二、一阶线性微分方程二、一阶线性微分方程.0)(yxPdxdy,)(dxxPydy ,)(dxxPydy,ln)(lnCd

5、xxPy 齐次方程的通解为齐次方程的通解为.)(dxxPCey1.线性齐次方程线性齐次方程一阶线性微分方程的一阶线性微分方程的解法解法(使用分离变量法使用分离变量法)2.非齐次方程非齐次方程).()(xQyxPdxdy 如果如果)(xP和和)(xQ不成比例,非齐次方程不成比例,非齐次方程 就不是可就不是可 分离变量的方程分离变量的方程 用所谓的常数变易法来求线性非齐次方程用所谓的常数变易法来求线性非齐次方程的通解的通解 常数变易法常数变易法把齐次方程通解中的常数变易为待定函数的方法把齐次方程通解中的常数变易为待定函数的方法.作变换作变换 dxxPexuy)()(,)()()()()(dxxPd

6、xxPexPxuexuy代代入入原原方方程程得得和和将将yy,)()()(CdxexQxudxxP ),()()(xQexudxxP 积分得积分得一阶线性非齐次微分方程的通解为一阶线性非齐次微分方程的通解为:dxxPdxxPeCdxexQy)()()(dxexQeCedxxPdxxPdxxP )()()()(对应齐次对应齐次方程通解方程通解非齐次方程特解非齐次方程特解.sin1的通解的通解求方程求方程xxyxy ,1)(xxP,sin)(xxxQ Cdxexxeydxxdxx11sin Cdxexxexxlnlnsin Cxdxxsin1 .cos1Cxx 解解例例1 1例例2 求解微分方程求

7、解微分方程 xexydxdysincos解解 xxPcos)(xexQsin)()(sinsinsinsincossincosCxeCdxeeeCdxeeeyxxxxxdxxxdx例例3 若若 20)()(xxfdtttfx求求)(xf解解 利用上限函数的性质,两边求导得:利用上限函数的性质,两边求导得:xxfxxf2)()(且且 0)0(f令令)(xfy xyxy2xxyy2221221221221221222)2()(xxxxxdxxxdxCeCeeCdxxeeCdxexey伯努利伯努利(Bernoulli)方程的标准形式方程的标准形式nyxQyxPdxdy)()()1,0(n方程为方程为

8、线性微分方程线性微分方程.方程为方程为非线性微分方程非线性微分方程.三、伯努利方程时,时,当当1,0 n时,时,当当1,0 n解法解法:需经过变量代换化为线性微分方程需经过变量代换化为线性微分方程.),()(1xQyxPdxdyynn ,得,得两端除以两端除以ny,1 nyz 令令),()1()()1(xQnzxPndxdz )()(1111xQyxPdxdynnn.42的通解的通解求方程求方程yxyxdxdy ,412xyxdxdyy ,yz 令令,2122xzxdxdz,22 Cxxz解得解得.224 Cxxy即即解解,得同除以ny例例 3242xyxdxyd222xyxdxyd例例4 4

9、 用适当的变量代换解下列微分方程用适当的变量代换解下列微分方程:;22.122xxexyyy 解解:2得令yz,22xxexzdxdz222Cdxexeezxdxxxdx 所求通解为所求通解为).2(222Cxeyx 2222xxexydxdy;)(sin1.22xyxyxdxdy 解解 原式可化为原式可化为,xyz 令令,dxdyxydxdz 则则,sin12zdxdz,42sin2Cxzz 分离变量得分离变量得所求通解为所求通解为.4)2sin(2Cxxyxy )(sin12xydxdyxy;1.3yxdxdy 解解,uyx 令令,1 dxdudxdy则则代入原式代入原式,11udxdu 分离变量得分离变量得,)1ln(Cxuu 代回将yxuCyxy)1ln(另解另解.yxdydx 方程变形为方程变形为谢谢观看!2020

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|