ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:537.54KB ,
文档编号:4370970      下载积分:25 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4370970.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(数值分析课件第三章解线性方程组的迭代法.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

数值分析课件第三章解线性方程组的迭代法.ppt

1、课件1第第3 3章章 解线性方程组的迭代法解线性方程组的迭代法 迭代法的基本思想是,把n元线性方程组nnnnnnnnnnbxaxaxabxaxaxabxaxaxa.22112222212111212111(3.1)或 Ax=b改写成等价的方程组 nnnnnnnnnnngxmxmxmxgxmxmxmxgxmxmxmx2211222221212112121111,或x=Mx+g 迭代法是从某一取定的初始向量x x(0)出发,按照一个适当的迭代公式,逐次计算出向量x x(1),x x(2),使得向量序列x x(k)收敛于方程组的精确解.迭代法是一类逐次近似的方法.其优点是,算法简便,程序易于实现.课

2、件2由此建立方程组的迭代公式 x(k+1)=Mx(k)+g,k=0,1,2,(3.2)其中M称为迭代矩阵迭代矩阵。对任意取定的初始向量x x(0),由(3.2)式可逐次算出迭代向量x x(k),k=1,2,如果向量序列x(k)收敛于x*,由(3.2)式可得 x*=Mx*+g 从而x x*是方程组x=Mx+g的解,也就是方程组Ax=b的解.这种求解线性方程组的方法称为迭代法迭代法 ,若迭代序列x(k)收敛,则称迭代法收敛,否则称迭代法发散.1 Jacobi迭代法和迭代法和Gauss-Seidel迭代法迭代法 Jacobi方法是由方程组(3.1)中第k个方程解出x x(k),得到等价方程组:课件3

3、从而得迭代公式nnnnnnnnnnnnnnnnnnnabxaaxaaxaaxabxaaxaaxaaxabxaaxaaxaax1122112222223222312221211111131113211121,3,2,1,)3.3()(1)(2)(1)1(222)(222)(2223)(2221)1(111)(111)(1113)(1112)1(112131232kabxaaxaaxaaxabxaaxaaxaaxabxaaxaaxaaxnnnknnnnknnnknnnkknkkkknkkknnnn课件4式(3.3)称为JacobiJacobi迭代法迭代法,简称为J J迭代法迭代法.,则J迭代法可写

4、成 x x(k+1)=BxBx(k)+g g k=0,1,2,可见,J J迭代法的迭代矩阵为0002122222211111112nnnnnnnnaaaaaaaaaaaaBTnnnababab),(222111g若记,2,1,0,2,1,)(11)(11)()1(knixaxabaxnijkijijkijiiikjji J J法也记为课件5G-SG-S迭代法也可记为,3,2,1,)4.3()1(1)1(2)1(1)1(222)(222)(2223)1(2221)1(111)(111)(1113)(1112)1(112131232kabxaaxaaxaaxabxaaxaaxaaxabxaaxaa

5、xaaxnnnknnnnknnnknnnkknkkkknkkknnnn式(3.4)称为Gauss-SeidelGauss-Seidel迭代法迭代法,简称为G-SG-S迭代法迭代法.若在J J迭代法中,充分利用新值,则可以得到如下的迭代公式,2,1,0,2,1,)(11)(11)1()1(knixaxabaxnijkijijkijiiikjji课件6方程组的精确解为x x*=(1,1,1)T.解解 J J迭代法计算公式为例例1 用J法和G-S法求解线性方程组141035310214310321321321xxxxxxxxx57)(2103)(1101)1(321)(3103)(151)1(257

6、)(3101)(2103)1(1kkkkkkkkkxxxxxxxxx取初始向量x x(0)=(0,0,0)T,迭代可得4.1,5.0,4.1)1(3)1(2)1(1xxx11.1,2.1,11.1)2(3)2(2)2(1xxx计算结果列表如下:课件7可见,迭代序列逐次收敛于方程组的解,而切迭代7次得到精确到小数点后两位的近似解.kx1(k)x2(k)x3(k)x(k)-x*0123456701.41.110.9290.99061.011591.0002510.998236400.51.201.0550.96450.99531.0057951.000125501.41.110.9290.9906

7、1.011591.0002510.998236410.50.20.0710.03550.011590.0057950.0017636 G-S G-S迭代法的计算公式为:课件8 同样取初始向量x x(0)=(0,0,0)T,计算结果为 由计算结果可见,G-S迭代法收敛较快.取精确到小数点后两位的近似解,G-S迭代法只需迭代3次,而J迭代法需要迭代7次.57)1(2103)1(1101)1(321)(3103)1(151)1(257)(3101)(2103)1(1kkkkkkkkkxxxxxxxxxkx1(k)x2(k)x3(k)x(k)-x*012301.41.06340.995104400.7

8、81.020480.9952756801.0260.9875161.0019068610.40.06340.0048956 课件9 为了进一步研究,从矩阵角度来讨论上述迭代法.对线性方程组AxAx=b b,记 D D=diag(a11,a22,ann)000121323121nnnnaaaaaaL000,122311312nnnnaaaaaaU则有 A A=D D-L L-U U于是线性方程组 AxAx=b b 可写成 (D D-L L-U U)x x=b b等价于 DxDx=(L L+U U)x x+b b 或或 x x=D D-1(L L+U U)x x+D D-1b b 课件10由此建立

9、J J迭代法迭代公式 x x(k+1)=D D-1(L L+U U)x x(k)+D D-1b b k=0,1,2,或写成 x x(k+1)=BxBx(k)+g g k=0,1,2,其中000)(21222222111111121nnnnnnnnaaaaaaaaaaaaULDBnnnababab2221111,bDgG-SG-S迭代法迭代公式可写成 x x(k+1)=D D-1LxLx(k+1)+D D-1UxUx(k)+D D-1b b 课件11 讨论迭代法 x(k+1)=Mx(k)+g k=0,1,2,Dx Dx(k+1)=LxLx(k+1)+UxUx(k)+b b (D D-L L)x

10、x(k+1)=UxUx(k)+b b x x(k+1)=(D D-L L)-1UxUx(k)+(D D-L L)-1b b 所以G-SG-S迭代法可以写成 x x(k+1)=GxGx(k)+g g k=0,1,2,其中 G G=(D D-L L)-1U U,g g=(D D-L L)-1b b 2 2 迭代法的收敛性迭代法的收敛性的收敛性.课件12 记误差向量e e(k)=x x(k)-x x*,则迭代法收敛就是e e(k)0 0.由于 x(k+1)=Mx(k)+g k=0,1,2,x*=Mx*+g k=0,1,2,所以 e(k+1)=Me(k),k=0,1,2,递推可得 e(k)=Mke(0

11、),k=0,1,2,可见,当k时,e e(k)0 0 Mk O O.对任意初始向量x x(0),迭代法收敛(M)1.定理定理3.1 证证 若Mk0,则k(M)=(Mk)Mk0,所以(M)1.若(M)0,使得(M)+1.则MkMk(M)+)k 0.课件13 若若M1,则对任意x x(0),迭代法收敛,而且 定理定理3.2)6.3(0)(1)k*(k)xxM1Mxx)5.3(1)1()(*)(kkkxxMMxx 证证 由于 x(k+1)=Mx(k)+g x(k)=Mx(k-1)+g x*=Mx*+g所以 x(k+1)-x(k)=M(x(k)-x(k-1),x(k+1)x*=M(x(k)x*)于是有

12、 x(k+1)-x(k)Mx(k)-x(k-1)x(k+1)x*Mx(k)x*x(k+1)-x(k)=(x(k+1)x*)-(x(k)x*)x(k)x*-x(k+1)x*课件14 x(k+1)-x(k)=(x(k+1)x*)-(x(k)x*)x(k)x*-x(k+1)x*(1-M)x(k)x*所以)()1(*)(11kkkxxMxx)1()(1kkxxMM)0()1(1xxMMk 定理3.2只是收敛的充分条件,并不必要,如7.005.08.0M则M1=1.2,M=1.3,M2=1.09,MF=1.17但(M)=0.81,所以迭代法是收敛的.由(3.5)式可见,M越小收敛越快,且当x(k)-x(

13、k-1)很小时,x(k)x*就很小,实际上用x(k)-x(k-1)作为课件15迭代终止的条件.例如kx1(k)x2(k)x3(k)x(k)-x*0123456701.41.110.9290.99061.011591.0002510.998236400.51.201.0550.96450.99531.0057951.000125501.41.110.9290.99061.011591.0002510.998236410.50.20.0710.03550.011590.0057950.0017636x(6)-x(5)=0.011339,x(7)x(6)=0.0056695 由(3.6)式可得:课件

14、16若使x(k)x*,只需可以事先估计达到某一精度需要迭代多少步.)0()1(1xxMMk ,即M(0)(1)xx)M(1ln/)ln(k 用J J迭代法求例1中方程组的解,取x(0)=(0,0,0)T,若使误差x(k)-x*10-5,问需要迭代多少次?解解 由例1知,x x(1)=(1.4,0.5,1.4)T,于是有,x x(1)-x x(0)=1.4,B B=0.5.例例2 00010310110351101103Bk应满足095.185.0ln/)4.1105.0ln(5k故取k=19,即需要迭代19次.课件173 J3 J迭代法和迭代法和G-SG-S迭代法的收敛性迭代法的收敛性 定理定

15、理3.33.3 J J迭代法收敛(B)1;若B1J J迭代法收敛;G-SG-S迭代法收敛(G)1;若G1 G-SG-S迭代法收敛;定义定义3.13.1 若n阶矩阵A=(aij)满足:niaaiinijjij,2,1,1则称矩阵A是严格对角占优矩阵严格对角占优矩阵.引理引理 若A是严格对角占优矩阵,则det(A)0.证证 A=D-L-U=D(E-D-1(L+U)=D(E-B)课件18因此,(B)B1,故=1不是B B的特征值,det(E E-B B)0.定理定理3.43.4 设A是严格对角占优矩阵,则解线性方程组Ax=b的J J迭代法和G-SG-S迭代法均收敛.因为A是严格对角占优矩阵,所以de

16、t(D)0,而且1max11nijjiiijniaaB所以,det(A)0.证证 由于B1,所以J J迭代法收敛.设是G G的任一特征值,则满足特征方程课件19 det(E-G)=det(E-(D-L)-1U)=det(D-L)-1)det(D-L)-U)=0所以有 det(D-L)-U)=0nnnnnnaaaaaaaaa212222111211UL)(D 若|1,则矩阵(D-L)-U 是严格对角占优矩阵,这与 det(D-L)-U)=0矛盾,所以|1,于是(G)1.定理定理3.5 设A 是对称正定矩阵,则解方程组Ax=b的 (1)J迭代法收敛2D-A也正定;(2)G-S迭代法必收敛.课件20

17、试建立一个收敛的迭代格式,并说明收敛性.解解 按如下方法建立迭代格式例例3 已知解线性方程组4252241632321321321xxxxxxxxx21)(321)(241)1(1kkkxxx由于迭代矩阵的行范数小于1,故此迭代法收敛.54)(352)(151)1(2kkkxxx61)(221)(131)1(3kkkxxx课件21课件22课件23课件24课件25课件26课件27课件28课件29课件30课件31设线性方程组36225124321321321xxxxxxxxx (1)写出Jacobi法和SOR法的迭代格式(分量形式);(2)讨论这两种迭代法的收敛性.(3)取初值x(0)=(0,0,

18、0)T,若用Jacobi迭代法计算时,预估误差x*-x(10)(取三位有效数字).课堂练习课堂练习课件32 (2)因为A是严格对角占优矩阵,但不是正定矩阵,故Jacobi法收敛,SOR法当01时收敛.解解 (1)(1)Jacobi法和SOR法的迭代格式分别为 216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1kkkkkkkkkxxxxxxxxx)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1kkkkkkkkkkkkkkkxxxxxxxxxxxxxxx (3)由(1)可见B=3/4,且取x(0)=(0,0,0)T,经计算可得x(1)=(1/4,-2/5,1/2)T,于是x(1)-x(0)=1/2,所以有113.05.075.0175.0110)0()1()10(*xxBBxxk

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|