ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:663KB ,
文档编号:4516285      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4516285.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第二章第二节柯西定理和第三节不定积分课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第二章第二节柯西定理和第三节不定积分课件.ppt

1、2.2 及及2.3 柯西定理及不定积分柯西定理及不定积分(一一)单连通区域的情形单连通区域的情形(二二)复通区域的情形复通区域的情形复习:复习:格林公式:格林公式:在平面区域在平面区域D上的二重积分可以通过沿区域上的二重积分可以通过沿区域D的边界的边界曲线曲线L上的曲线积分来表达。上的曲线积分来表达。定理:设闭区域定理:设闭区域D由分段光滑的曲线由分段光滑的曲线L围成,函数围成,函数P(x,y)及及Q(x,y)在在D 上具有一阶连续偏导数,则有上具有一阶连续偏导数,则有这里这里L是是D的取正向的整个边界曲线。上式叫格林公的取正向的整个边界曲线。上式叫格林公式。式。LDQdyPdxdxdyyPx

2、Q(一一)单连通区域的情形单连通区域的情形 单与复连通区域:单与复连通区域::,如如下下的的正正向向我我们们规规定定的的边边界界曲曲线线对对平平面面区区域域LLD.,始始终终位位于于他他的的左左侧侧的的这这一一方方向向行行走走时时沿沿DLD2L1L 复连通区域复连通区域D 的边界的边界曲线曲线L由由 和和 组成组成,1L2LD 单连通区域单连通区域 D 的边界曲的边界曲线线L的正向是逆时针方向的正向是逆时针方向.L 逆时逆时针针 顺时针方向为边界曲顺时针方向为边界曲线线L的正向的正向.1L2L3L 单连通区域的单连通区域的柯西定理:柯西定理:如果函数如果函数f(z)在闭单连通区域在闭单连通区域

3、B中解析,则沿中解析,则沿B中任中任一个分段光滑的闭合曲线一个分段光滑的闭合曲线l有:有:这里的这里的l也可以是也可以是B的边界。的边界。Bl证明:证明:由于由于f(z)解析,因而其偏导数解析,因而其偏导数yvxvyuxu,在区域内连续,对上式右端的实部和虚部分别应用格在区域内连续,对上式右端的实部和虚部分别应用格林公式林公式将上面的闭合曲线积分化为面积分将上面的闭合曲线积分化为面积分在区域内连续,对上式右端的实部和虚部分别应用格在区域内连续,对上式右端的实部和虚部分别应用格林公式林公式由于由于f(z)解析,因而其偏导数解析,因而其偏导数yvxvyuxu,lSvuudxvdydxdyxy xv

4、yuyvxu根据根据Cauchy-Riemann方程方程右端两个积分中的被积函数均为右端两个积分中的被积函数均为0,故有,故有lSuvvdxudydxdyxy 0lf z dz 将上面的闭合曲线积分化为面积分将上面的闭合曲线积分化为面积分由此证明了单连通区域的由此证明了单连通区域的柯西定理:柯西定理:如果函数如果函数f(z)在闭单连通区域在闭单连通区域B中解析,则沿中解析,则沿B中任中任一个分段光滑的闭合曲线一个分段光滑的闭合曲线l有:有:这里的这里的l也可以是也可以是B的边界。的边界。Bll 推论:若推论:若f(z)在单连通区域中解析,则复变积分在单连通区域中解析,则复变积分与路径无关。与路

5、径无关。dzzfl12()()()0CCCf z dzf z dzf z dz 因此,如果固定起点因此,如果固定起点z0,而令终点而令终点z为变点,则作为积分上限的函数为变点,则作为积分上限的函数是单连通区域内的以是单连通区域内的以z为宗量的单值函数。我们称该函数为宗量的单值函数。我们称该函数F(z)称为称为f(z)的的不定积分不定积分。0zzf z dzF zf(z)的不定积分的不定积分l 如果函数如果函数f(z)在单连通区域内解析,则在单连通区域内解析,则 dzzfzFzz0也在单连通区域内解析。并且也在单连通区域内解析。并且 zfdzzfdzdzFzz0即即F(z)是是f(z)的一个的一

6、个原函数原函数。还可以证明:还可以证明:1221zFzFdzzfzz即路积分的值等于即路积分的值等于原函数的改变量原函数的改变量(由起点由起点z1和终点和终点z2决定,与从决定,与从z1到到z2的路径无关的路径无关)。(二二)复通区域的情形复通区域的情形 奇点奇点:不可导、不连续、没有定义:不可导、不连续、没有定义 复通区域概念复通区域概念:境界线的正方向:境界线的正方向:复连通区域复连通区域 复通区域的柯西定理:复通区域的柯西定理:如果如果f(z)是闭复通区域上的单值解析函数,则是闭复通区域上的单值解析函数,则 01dzzfdzzfnilli式中式中l 为区域外境界线,诸为区域外境界线,诸l

7、i为区域的内境界线,积分均沿境界为区域的内境界线,积分均沿境界线正方向进行。线正方向进行。证明证明思路:复通区域转化为单通区域思路:复通区域转化为单通区域ll2l1ll2l1DCDCABBAll2l1DCDCABBA证明证明:0.21dzzfdzzfdzzfdzzfdzzfdzzfdzzfCDlCDABlABl 0.21dzzfdzzfdzzflll dzzfnili1 01dzzfdzzfnilli dzzfdzzfnilli1 dzzfdzzfnilli1即即总结起来,柯西定理说的是总结起来,柯西定理说的是:u 闭单通区域上的解析函数沿境界线积分为零。闭单通区域上的解析函数沿境界线积分为零

8、。u 闭复通区域上的解析函数沿所有内外境界线正方闭复通区域上的解析函数沿所有内外境界线正方 向积分和为零。向积分和为零。u闭复通区域上的解析函数沿外境界线逆时针方向闭复通区域上的解析函数沿外境界线逆时针方向 积分等于沿所有内境界线逆时针方向积分之和。积分等于沿所有内境界线逆时针方向积分之和。(三三)一个重要例题与结论一个重要例题与结论计算积分计算积分.dzazInln为整数为整数.xyxyaaOOllCR.dzazInl解:解:l 回路回路 l 不包围不包围点点 a I=0(单连通区域柯西定理单连通区域柯西定理)l回路回路 l 包围包围点点 a(a)0n被积函数被积函数 在在 l 所所围区域上解析。围区域上解析。(b)nazzf0n被积函数在被积函数在 l 所围区域有一个奇点所围区域有一个奇点a。以以a为圆心,为圆心,R为半径画一员周为半径画一员周C,在,在C上,上,根据复通区域的柯西定理有:根据复通区域的柯西定理有:iazRe201120ReRedeiRideRadeRdzazIniniinniincnnl=011111nineniiRIn时,20idiIn2120时,111nidnid综合以上讨论,得出综合以上讨论,得出1.02112101ndzazinazdzinlalall不包围,包围,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|