ImageVerifierCode 换一换
格式:PPT , 页数:13 ,大小:136.77KB ,
文档编号:4697295      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-4697295.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(三角形的内切圆课件(上课用).ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

三角形的内切圆课件(上课用).ppt

1、例例1 作圆,使它和已知三角形的各边都相切作圆,使它和已知三角形的各边都相切(1)作圆的关键是什么)作圆的关键是什么?提出以下几个问题进行讨论:提出以下几个问题进行讨论:(2)假设)假设 I是所求作的圆,是所求作的圆,I和三和三角形三边都相切,圆心角形三边都相切,圆心I应满足什么应满足什么条件条件?(3 3)这样的点)这样的点I应在什么位置应在什么位置?(4 4)圆心)圆心I确定后半径如何找?确定后半径如何找?结论:和三角形的各边都相切的圆可以作一个且只可以作结论:和三角形的各边都相切的圆可以作一个且只可以作出一个出一个ABCIMNDABCM例例1 作圆,使它和已知三角形的各边都相切作圆,使它

2、和已知三角形的各边都相切已知:已知:ABC(如图)(如图)求作:和求作:和ABC的各边都相切的圆的各边都相切的圆作法:作法:1、作、作ABC、ACB的平分线的平分线BM和和CN,交点为,交点为I.2、过点、过点I作作IDBC,垂足为,垂足为D.3、以、以I为圆心,为圆心,ID为半径作为半径作 I,I就是所求的圆就是所求的圆.N ID 1、如图如图1,ABC是是 O的的 三角形。三角形。O是是ABC的的 圆,点圆,点O叫叫ABC的的 ,它是三角形它是三角形 的交点。的交点。外接外接内接内接外心外心三边中垂线三边中垂线13、如图、如图2,DEF是是 I的的 三角形,三角形,I是是DEF的的 圆,点

3、圆,点I是是 DEF的的 心,它是三角心,它是三角形形 的交点。的交点。2、定义:和三角形各边都相切的圆、定义:和三角形各边都相切的圆叫做叫做 ,内切圆,内切圆的圆心叫做三角形的的圆心叫做三角形的 ,这,这个三角形叫做个三角形叫做 。ABCO图图1IDEF图2三角形的内切圆三角形的内切圆内心内心圆的外切三角形圆的外切三角形外切外切内切内切内内角平分线角平分线三角形内心的性质三角形内心的性质:1、三角形的内心到三角形各边的距离相等;、三角形的内心到三角形各边的距离相等;2、三角形的内心在三角形的角平分线上;、三角形的内心在三角形的角平分线上;1、三角形的外心到三角形各个顶点的距离相等;、三角形的

4、外心到三角形各个顶点的距离相等;2、三角形的外心在三角形三边的垂直平分线上;、三角形的外心在三角形三边的垂直平分线上;三角形外心的性质三角形外心的性质:CABIDEFO名称名称确定确定方法方法图形图形性质性质外心外心内心内心ABCOABCO三 角 形三 角 形三 边 中三 边 中垂 线 的垂 线 的交点交点三角形三角形三条角三条角平分线平分线的交点的交点(三 角(三 角形 外 接形 外 接圆 的 圆圆 的 圆心)心)(三角(三角形内切形内切圆的圆圆的圆心)心)1.OA=OB=OC;2.外心外心不一定在三角形的内不一定在三角形的内部部1.到三边的距离相等;到三边的距离相等;2.OA、OB、OC分

5、别平分分别平分BAC、ABC、ACB;3.内心在三角形内部内心在三角形内部 判断题:判断题:1、三角形的内心到三角形各个顶点的距离相等(、三角形的内心到三角形各个顶点的距离相等()2、三角形的外心到三角形各边的距离相等、三角形的外心到三角形各边的距离相等()3、等边三角形的内心和外心重合;、等边三角形的内心和外心重合;()4、三角形的内心一定在三角形的内部(、三角形的内心一定在三角形的内部()5、菱形一定有内切圆(、菱形一定有内切圆()6、矩形一定有内切圆(、矩形一定有内切圆()错错错错对对对对 错错 对对定义:和多边形各边都相切的圆定义:和多边形各边都相切的圆叫做叫做 ,这个,这个多边形叫做

6、多边形叫做 。多边形的内切多边形的内切 圆圆圆的外切多边形圆的外切多边形内切内切外切外切如上图,四边形如上图,四边形DEFG是是 O的的 四四 边形,边形,O是四边形是四边形DEFG的的 圆,圆,DEFG.O 例例2 如图,在如图,在ABC中,点中,点O是内心,是内心,(1)若)若ABC=50,ACB=70,求,求BOC的度数的度数ABCO(2 2)若)若A=80 A=80,则,则BOC=BOC=度。度。(3 3)若)若BOC=100 BOC=100,则,则A=A=度。度。解解(1)点点O是是ABC的内心,的内心,OBC=OBA=ABC=25 同理同理 OCB=OCA=ACB=35 BOC=1

7、80 (OBC OCB)=180 60=120 13020(4)试探索:)试探索:A与与BOC之间存在怎样之间存在怎样的数量关系?请说明理由。的数量关系?请说明理由。理由:理由:点点O是是ABC的内心,的内心,OBC=ABC,OCB=ACB OBC OCB=(ABC+ACB)=(180 A)=90 A在在ABC中,中,BOC=180(OBC OCB)=180(90 A)=90+AABCO答:答:BOC=90 +A例例2:如图,设:如图,设ABC的边的边BC=a,CA=b,AB=c,s=(a+b+c)/2,内切圆,内切圆O和各边分别相切于和各边分别相切于D,E,F。求证:求证:AD=AF=s-a

8、,BE=BD=s-b,CF=CE=s-c。ABCDEFO(三)、特殊三角形外接圆、内切圆半径的求法:(三)、特殊三角形外接圆、内切圆半径的求法:R=c2 r=a+b-c2ABCOIabc直角三角形外接圆、内切圆半径的求法直角三角形外接圆、内切圆半径的求法 课堂小结:课堂小结:1 1、本节课从实际问题入手,探索得出三角形内切圆的作本节课从实际问题入手,探索得出三角形内切圆的作法法.2 2、通过类比三角形的外接圆与圆的内接三角形概念得出、通过类比三角形的外接圆与圆的内接三角形概念得出三角形的内切圆、圆的外切三角形概念,并介绍了多边形的三角形的内切圆、圆的外切三角形概念,并介绍了多边形的内切圆、圆的外切多边形的概念。内切圆、圆的外切多边形的概念。3 3、学习、学习 时要明确时要明确“接接”和和“切切”的含义、弄清的含义、弄清“内心内心”与与“外心外心”的区别,的区别,4 4、利用三角形内心的性质解题时,要注意整体思想的运、利用三角形内心的性质解题时,要注意整体思想的运用,在解决实际问题时,要注意把实际问题转化为数学问题。用,在解决实际问题时,要注意把实际问题转化为数学问题。谢谢谢谢,再见再见 !20032003年年1212月月1717日日

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|